2026/02/01 23:09 1/3 Posix threads

Ncnonb3oBaHue pthread API

Balla 3a4aya - peann3oBaTh KNaccu4eckuii naTTepH producer-consumer ¢ HeboMbLLIMMM
AOMNONIHATENIbHBIMMW YCIOBUAMU. [porpamMma Ao/KHa COCTOATb U3 3+N NMOTOKOB:

1. rnaBHbIN

2. producer

3. interruptor

4. N noToKoB consumer

Ha CTaHﬂ,apTHbIIZ BBOJ MporpaMmMe nogaeTcsa CTPOKa - CNUCOK Hucen, pa3)J.ej'IéHHbIX npo6en0M.
[MHa Cnncka Yyncen He 3afaéTCA - CHUTbIBAHME NPONCXOONT OO0 nepeBoaa KapeTKWN.

e 3apayva producer-noTokKa - NoJly4nTb Ha BXOL CMMCOK YMCen, 1 Mo o4epeam UCnosb3oBaTh
Ka)xK[i0e 3Ha4yeHune 13 3Toro cnucka ans obHoBeHUS nNepeMeHHoW pa3aensemMon Mexay
noTokamu. locsie 3TOro NOTOK AOJ/KEH A0XAATbCA peakunm 04HOro n3 consumer-noToKos, 1
NPOAO/IKNTb 0OHOBNEHME 3HAYEHWI TOJIbKO MOC/E TOF0 Kak MOTOK-Consumer npuHsaa 3To
n3MeHeHve. ®yHKUMA NCNONHALLAA KOA 3TOro notoka producer _routine 4osHKHa NPUHUMATL
yKasaTenb Ha 06beKkT Tuna Value, n ncnonb3oBaTh €ro a5 o6HOBNEHNUS.

e 3afay4ya consumer-noTOKOB OTPearmpoBaTh Ha KaXk4oe N3MeHeHne nepeMeHHon data u
HabvpaTb CyMMy NOJlyYeHHbIX 3Ha4eHWI. ocne Toro Kak LOCTUrHYTO nocienHee 0bHOBEHME,
(byHKUMA NOTOKa AO/MKHA BEPHYTb PEe3y/IbTUPYIOLLYI0 CyMMY. TakXe 3TOT NOTOK A0/KEH
3aWMTUTLCA OT MONbITOK NOTOKa-interruptor ero ocTaHOBUTb. PYHKLMA NCMOAHAOLWANA KO4
3TOro NoTOKa consumer_routine foJHKHa NPUHUMaTL YKasaTenb Ha TOT Xe 06bekT Tuna Value,
W 4UTaTb U3 Hero obHoBIeHUS. [locie CyMMUPOBaHUSA NepeMeHHOM MOTOK A0JIKEH 3aCHYTb Ha
cnyyarHoe KoJM4eCTBO MUIIMCEKYH, BEPXHUI Npeden byneTt nepefaH Ha BXo4 NPUIoXKeHUs.
BoBpeMs CHa NOTOK He A0/HKEH MelaTb APYruM NoTOKaM Consumer BbIMOJIHATbL CBOW 3aJayu,
€C/IN OHWN eCTb

e 3ajava noToka-interruptor npocTa: noka NPOMCXoANT nNpoLecc 0bHOBNEHUS 3HAYEHWUNA, OH
LLO/MKEH NMOCTOAHHO MbITaTbCA OCTAHOBUTbL CJly4YalHbIA MOTOK consumer (Bbl4MCNeHe
C/ly4alHOro NOTOKa NPOUCXOAUT Nepen Ka)kaon NonbITKON OCTaHOBKMK). Kak TONbKO MOTOK
producer npou3sen nocnegHee o6HOBNEHNE, 3TOT NMOTOK 3aBepLUaeTCs.

®yHKums run_threads fonxHa 3anyckaTb BCe MOTOKW, LOXKUAATHCA UX BbIMNONHEHNS, 1 BO3BPaLLaTh
pe3ynbTaT NOTOKa-consumer (04HOro 13, Tak Kak y BCex oHu ByayT 0ANHAKOBbI).

0ns 06HOBAEHNS M MONYYEHUSA 3HAYEHUSA CefyeT NCMNOJIb30BaTb NOArOTOBJIEHHbIN Knacc Value.
CnepnyeTt co3faTb 0AMH 3K3eMnnap Value, nepefaTtb ero aprymeHTom B pyHKLMM producer_routine u
consumer_routine. YTobbl 06HOBMTbL 3HaYeHWe, cnegyeT UCNob30BaTb MeToA update, 4ToObI
nosly4nTb - get

Ina obecneyeHns MeXMNOTOYHOr0 B3aMO4ECTBMS AOMNYCKAaeTCa NCNo/b30BaHne ToNbko pthread
API. Ha BXxoA NpuaoXeHUs nepefaéTtcs 2 aprymMeHTa npy cTapTe UMEHHO B TaKoW
nocnenoBaTeNIbHOCTH:

1. Yncno NoToKoB consumer
2. BepxHuin npenen cHa consumer B MUAIMCEKYHOAX

#include <pthread.h>

Open Source & Linux Lab - http://wiki.osll.ru/



Last

;8?;;%/07 courses:high_performance_computing:producer_consumer http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1538905735

12:48

class Value {
public:
Value() : value(0) { }

void update(int value) {
~value = value;

}

int get() const {
return _value;

}

private:
int value;

};

void* producer routine(void* arg) {
// Wait for consumer to start

// Read data, loop through each value and update the value, notify
consumer, wait for consumer to process

}

void* consumer routine(void* arg) {
// notify about start
// allocate value for result
// for every update issued by producer, read the value and add to sum
// return pointer to result

}

void* consumer_interruptor routine(void* arg) {
// wait for consumer to start

// interrupt consumer while producer is running

}

int run_threads() {
// start N threads and wait until they're done
// return aggregated sum of values

return 0;

}

int main() {
std::cout << run_threads() << std::endl;
return 0;

http://wiki.osll.ru/ Printed on 2026/02/01 23:09



2026/02/01 23:09 3/3 Posix threads

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:

Last update: 2018/10/07 12:48

Open Source & Linux Lab - http://wiki.osll.ru/


http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1538905735

	Использование pthread API

