
2026/02/01 23:09 1/3 Posix threads

Open Source & Linux Lab - http://wiki.osll.ru/

Использование pthread API

Ваша задача - реализовать классический паттерн producer-consumer с небольшими
дополнительными условиями. Программа должна состоять из 3+N потоков:

главный1.
producer2.
interruptor3.
N потоков consumer4.

На стандартный ввод программе подается строка - список чисел, разделённых пробелом.
Длина списка чисел не задаётся - считывание происходит до перевода каретки.

Задача producer-потока - получить на вход список чисел, и по очереди использовать
каждое значение из этого списка для обновления переменной разделяемой между
потоками. После этого поток должен дождаться реакции одного из consumer-потоков, и
продолжить обновление значений только после того как поток-consumer принял это
изменение. Функция исполняющая код этого потока producer_routine должна принимать
указатель на объект типа Value, и использовать его для обновления.
Задача consumer-потоков отреагировать на каждое изменение переменной data и
набирать сумму полученных значений. После того как достигнуто последнее обновление,
функция потока должна вернуть результирующую сумму. Также этот поток должен
защититься от попыток потока-interruptor его остановить. Функция исполняющая код
этого потока consumer_routine должна принимать указатель на тот же объект типа Value,
и читать из него обновления. После суммирования переменной поток должен заснуть на
случайное количество миллисекунд, верхний предел будет передан на вход приложения.
Вовремя сна поток не должен мешать другим потокам consumer выполнять свои задачи,
если они есть
Задача потока-interruptor проста: пока происходит процесс обновления значений, он
должен постоянно пытаться остановить случайный поток consumer (вычисление
случайного потока происходит перед каждой попыткой остановки). Как только поток
producer произвел последнее обновление, этот поток завершается.

Функция run_threads должна запускать все потоки, дожидаться их выполнения, и возвращать
результат потока-consumer (одного из, так как у всех они будут одинаковы).

Для обновления и получения значения следует использовать подготовленный класс Value.
Следует создать один экземпляр Value, передать его аргументом в функции producer_routine и
consumer_routine. Чтобы обновить значение, следует использовать метод update, чтобы
получить - get

Для обеспечения межпоточного взаимодействия допускается использование только pthread
API. На вход приложения передаётся 2 аргумента при старте именно в такой
последовательности:

Число потоков consumer1.
Верхний предел сна consumer в миллисекундах2.

#include <pthread.h>

Last
update:
2018/10/07
12:48

courses:high_performance_computing:producer_consumer http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1538905735

http://wiki.osll.ru/ Printed on 2026/02/01 23:09

class Value {
public:
 Value() : _value(0) { }

 void update(int value) {
 _value = value;
 }

 int get() const {
 return _value;
 }

private:
 int _value;
};

void* producer_routine(void* arg) {
 // Wait for consumer to start

 // Read data, loop through each value and update the value, notify
consumer, wait for consumer to process

}

void* consumer_routine(void* arg) {
 // notify about start
 // allocate value for result
 // for every update issued by producer, read the value and add to sum
 // return pointer to result
}

void* consumer_interruptor_routine(void* arg) {
 // wait for consumer to start

 // interrupt consumer while producer is running
}

int run_threads() {
 // start N threads and wait until they're done
 // return aggregated sum of values

 return 0;
}

int main() {
 std::cout << run_threads() << std::endl;
 return 0;
}

2026/02/01 23:09 3/3 Posix threads

Open Source & Linux Lab - http://wiki.osll.ru/

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1538905735

Last update: 2018/10/07 12:48

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1538905735

	Использование pthread API

