2026/02/01 23:07 1/3 Posix threads

Posix threads

GitHub-classroom ons camMoCTOATENIbHO N3YYaloLWMX KYPC He B paMKax YHUBEPCUTETCKNX
nporpamm

Balua 3agaya - peasn3oBaThb KJlaccnmyeckunin naTTepPH producer-consumer C HeboNbWNMK
LONOJIHNTENbHBLIMWU YC/IOBMAMU. [TporpamMma LO/1XKHA COCTOATh U3 3+N noTokoB:

[NaBHbIN

producer

interruptor

N noTokoB consumer

Ll

B chainn, 4TeHne KOTOPOro yxe peann3oBaHo B WwabsioHe Kofa B 6IOKUPYIOLLKEM pexunMe, nuweTcs
CMUCOK Yncen, pa3faenéHHbix npobenom (YMTaTb MOXKHO 40 NepeHoca CTPOKK). [anHa Cnmcka Yncen
He 3a4aéTCs - CYUTbIBAHNE NPOMCXOANT A0 NepeBofa KapeTKu.

e 3apava producer-noToka - NoJly4nTb Ha BXOL CMMUCOK YMCen, U Mo o4epeam UCnosb30BaThb
Ka)X[0e 3Ha4yeHne 13 3Toro cnuncka ans obHoOBNEHUSA NePeEMEHHON Pa3aensiemMon Mexay
NoTOKaMm

e 3ajava consumer-noTOKOB OTpearnpoBaTh Ha yBeAoMeHne oT producer n HabupaTb CymMMy
NOJTYHEHHbIX 3HaYeHU. TakXKe 3TOT NOTOK LOJ/KEH 3alUTUTLCSA OT MOMbITOK MNOTOKa-
interruptor ero ocTaHOBUTb. [ONONIHUTESIbHbIE YCNOBUS:

1. ®yHKUMA, NCMOMHAKOLWAA KOA 3TOro NoOToKa consumer_routine, LO/MKHA NPUHUMATb
yKa3aTesnb Ha 06beKT/nepeMeHHyto, N3 KoToporo byaeTt YutaTb 06HOBAEHNMA

2. Mocne cyMMUpoBaHMA NepemMeHHON NOTOK AOJDKEH 3aCHYTh Ha C/ly4allHOE KONNYeCTBO
MWINCEKYHA, BEPXHUI Npeaen byneT nepedaH Ha BXxoa npuaoxxeHns (0 MUAANCEKYHA
Tak)Xe OOJHKHO KOppeKTHO obpabaTbiBaTbCA). BoBpeMsi CHa MNOTOK He OOJ/IKEH MeLlaTb
LPYrM noToKam consumer BbINOJHATL CBOM 3a4a4K, eCJi OHW eCTb

3. MoToKkm consumer He J0/HKHbI Ay6AMpoBaTh BbIYUCAEHNA APYT C APYFOM OOHUX N TEX Xe
3HAYeHUN

4. B KayeCTBe BO3BPALLAEMOr0 3HaYeHNS NOTOK LO/KEH BEPHYTb CBOK YaCTUYHYIO
NOCYNUTAHHYIO CyMMY

e 3ajada NoToKa-interruptor npocTa: Noka NPONCXOAMT npoLecc 06HOBNEHNS 3HAYEHUIA, OH
LOJDKEH MOCTOSHHO MbITaTbCA OCTAHOBUTbL CJIyHalHbIA MOTOK consumer (Bbl4UCeHne
CJly4aHOro NoToKa NPOUCXoAMT nepes Ka)kaown rnonbITKOW 0CTaHOBKM). Kak TONbKO MOTOK
producer npon3Bsen nocnegHee obHOBNEHME, 3TOT NOTOK 3aBepLlaeTcsa. B 3TOM NoToKe MOXHO
BbIMOJIHATb BCMIOMOraTe/lbHble eNCTBUS KOTOPbIe MOMOryT KOppekTHO obpaboTaTb curHan

e 3aBepLueHne NPUIoXKEHUs NPONCXOAUT WU NPU CHUTLIBAHUW NepeBoa KapeTku 13 ganna
nam no nocbiike curHana SIGTERM, 06paboTKy KOTOpPOro HyXHO Takxe AobasuTob. B
0bpaboTymKe cMrHana MOXXHO BbI3blBaTb TONLKO Signal-safe yHKLMK
https://man7.org/linux/man-pages/man7/signal-safety.7.html B cny4ae, ecim B 3TOT MOMEHT
MOTOK, YNTAKOLWMI faHHble C (halna, HAXOAUTCS B pexume 6N10KMPYIOLLEro YTEHUS, - OH TakxXe
LLO/KEH KOPPEKTHO 3aBepLumnThes. [one3Ho npucMoTpeThes K std::sig_atomic_t - no3sonseTr
notokobesonacHo 1 signal-safe obpawaTbCa K MEPeMEHHOM TaKoro Tuna.

e B HawewM producer/consumer HeobxoaMMo peanm30BaTbCA NOTOKOBYO 0O6pOOTKY AaHHbIX O
3TUX LleNen 3anpeLlaeTcsa 3arpy>xaTb Becb hann B O3Y, nHayve Ha 6onblinx dannax obpaboTka
He ByneT nomewaTbCs B orpaHmyeHmsa O3Y Ha BbIYUCANTENIbHOM YCTPONCTBE.

DyHKUNA run_threads OOJKHa 3anyCKaTb BCE NMOTOKWU, 0OXKWNAATbCA NX BbIMOJIHEHNA, N BO3BPaALLaTh

Open Source & Linux Lab - http://wiki.osll.ru/


https://classroom.github.com/a/w-966goN
https://man7.org/linux/man-pages/man7/signal-safety.7.html
https://en.cppreference.com/w/cpp/utility/program/sig_atomic_t

Last
update:
2024/03/04
01:55

courses:high_performance_computing:producer_consumer http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1709506546

pe3ysibTaT 0bLlero cyMMMpoBaHus.

Ons obecneyeHns MeXMOTOYHOr0 B3aUMO4EeNCTBMA [ONYyCKaeTCa MCNoib30BaHMe ToJsibko pthread
API. Ha BxoZ nNpuioxeHUs nepefaérca 2 apryMeHTa npu CTapTe UMEHHO B TaKou
nocnenoBaTesibHOCTH:

1. Yncno noTokoB consumer
2. BepxHuin npepen cHa consumer B MUIUCEKYHAAX

B noTOK BbiBOAA [O/KHO MOMNaAaTh TONLKO PE3Y/IbTUPYIOLLEE 3HAYEHNE, MO YMOIYAHUIO HNKAKOW
OTNIAA0YHOW MM 3anNpPOCHON MHOPMaLIMK BIBOAUTHLCS HE [OJKHO. B ciyYae LeTeKTUPOBaHMS
ownboK HY)KHO BblJaBaTb He Hy/1IeBOM KOA BO3BpaTa.

#include <iostream>
#include <fstream>
#include <pthread.h>

void* producer routine(void* arg
// Wait for consumer to start.
// You can use this waiting only for debugging your code
// For final solution please remove this waiting

// Read data, loop through each value and update the value, notify
consumer, wait for consumer to process

std::ifstream ifs("in.txt");

//

void* consumer routine(void* arg
// notify about start
// you can use this notification only for debugging your code
// for final solution please remove this notification

// for every update issued by producer, read the value and add to sum
// return pointer to result (for particular consumer)

void* consumer interruptor routine(void* arg
// wait for consumers to start
// you can use this waiting only for debugging your code
// for final solution please remove this waiting

// interrupt random consumer while producer is running
int run_threads

// start N threads and wait until they're done
// return aggregated sum of values

http://wiki.osll.ru/ Printed on 2026/02/01 23:07



2026/02/01 23:07 3/3 Posix threads

int main
std::cout << run threads() << std::endl;

’

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link: . T
http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1709506546 A

Last update: 2024/03/04 01:55

Open Source & Linux Lab - http://wiki.osll.ru/


http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1709506546

	Posix threads

