2026/02/01 23:09 1/3 Posix threads

Posix threads

GitHub-classroom ons camMoCTOATENIbHO N3YYaloLWMX KYPC He B paMKax YHUBEPCUTETCKNX
nporpamm

Balua 3agaya - peasn3oBaThb KJlaccnmyeckunin naTTepPH producer-consumer C HeboNbWNMK
LONOJIHNTENbHBLIMWU YC/IOBMAMU. [TporpamMma LO/1XKHA COCTOATh U3 3+N noTokoB:

[NaBHbIN

producer

interruptor

N noTokoB consumer

Ll

B chainn, 4TeHne KOTOPOro yxe peann3oBaHo B WwabsioHe Kofa B 6IOKUPYIOLLKEM pexunMe, nuweTcs
CMUCOK Yncen, pa3faenéHHbix npobenom (YMTaTb MOXKHO 40 NepeHoca CTPOKK). [anHa Cnmcka Yncen
He 3a4aéTCs - CYUTbIBAHNE NPOMCXOANT A0 NepeBofa KapeTKu.

e 3apava producer-noToka - NoJly4nTb Ha BXOL CMMUCOK YMCen, U Mo o4epeam UCnosb30BaThb
Ka)X[0e 3Ha4yeHne 13 3Toro cnuncka ans obHoOBNEHUSA NePeEMEHHON Pa3aensiemMon Mexay
noToKamm

e 3ajava consumer-noTOKOB OTpearnpoBaTh Ha yBeAoMeHne oT producer n HabupaTb CymMMy
NONly4YEeHHbIX 3Ha4YeHUN. TakXXe 3TOT NOTOK AOJ/KEH 3aLUTUTHLCA OT NOMNbITOK NOTOKa-
interruptor ero ocTaHOBUTb. [ONONIHUTESIbHbIE YCNOBUS:

1. OyHKUKMA, NCNOSIHAKOLWANA KOL 3TOro NoToKa consumer_routine, O/KHa MPUHUMATb
yKa3aTesnb Ha 06beKT/nepeMeHHyto, N3 KoToporo byaeTt YutaTb 06HOBAEHNMA

2. lNocne cyMMMpoBaHMA NepeMeHHON NOTOK AOJ/KEH 3aCHYTb Ha CJlyYalnHoe KOINYeCcTBo
MWINCEKYHA, BEPXHUI Npeaen byneT nepedaH Ha BXxoa npuaoxxeHns (0 MUAANCEKYHA
Tak)Xe OOJHKHO KOppeKTHO obpabaTbiBaTbCA). BoBpeMsi CHa MNOTOK He OOJ/IKEH MeLlaTb
APYrum noTokaMm consumer BbIMOJIHATbL CBOW 3a4a4K, €CJIN OHU eCTb

3. MoToKkm consumer He J0/HKHbI Ay6AMpoBaTh BbIYUCAEHNA APYT C APYFOM OOHUX N TEX Xe
3HAYeHUN

4. B KayeCTBe BO3BPALLAEMOro 3Ha4YE€HMSA NOTOK AOJHKEH BEPHYTb CBOK HYaCTUYHYIO
NOCYMUTAHHYIO CYMMY

e 3ajada NoToKa-interruptor npocTa: Noka NPONCXOAMT npoLecc 06HOBNEHNS 3HAYEHUIA, OH
LOJDKEH MOCTOSHHO MbITaTbCA OCTAHOBUTbL CJIyHalHbIA MOTOK consumer (Bbl4UCeHne
CJly4aHOro NoToKa NPOUCXoAMT nepes Ka)kaown rnonbITKOW 0CTaHOBKM). Kak TONbKO MOTOK
producer npon3Bsen nocnegHee obHOBNEHME, 3TOT NOTOK 3aBepLlaeTcsa. B 3TOM NoToKe MOXHO
BbIMNOJIHATbL BCMOMOraTeNbHble AENCTBUA KOTOPbIE MOMOMYT KOPPEKTHO 0bpaboTaTb curHan

e OyHKUMA run_threads fonxkHa 3anyckaTb BCe NOTOKW, LOXUAATLCA UX BbINOJHEHNUS, U
BO3BpalLaTb pe3ynbTaT 0bwero cymmnpoBaHus

e 3aBepLleHne NMPUIoXKEHNS NPOUCXOANT UAN NPU CHUTLIBAHUKN NepeBoaa KapeTkun 13 danna
1M No noceinke curHana SIGTERM, 06paboTKy KOTOPOro Hy)KHO Tak)xe nobasuTb. B
06bpaboTymMKe cMrHana MOXXHO BbI3blBaTb TONbKO Signal-safe dyyHKLMK
https://man7.org/linux/man-pages/man7/signal-safety.7.html B cny4ae, ecnm B 3TOT MOMEHT
NOTOK, YATAIOLLNA JaHHbIE C halna, HAXO4MTCSA B pexume 6NOKUPYIOLLErO YTEHUS, - OH TaKXe
LLO/KEH KOPPEKTHO 3aBepLlumnTbhCs. [lonesHo npucMoTpeThes K std::sig_atomic_t - nossonseTr
notokobesonacHo u signal-safe obpallaTbCa K NEPEMEHHON TaKoro Tmna.

e [lpn cMrHane B Ka4yecTBe BbIBOAA HYXXHO BblAaBaTb NMNOCYUTAHHYIO HA 3TOT MOMEHT CyMMY

ApPXUTEKTYpPHbIE OrpaHNYeHNS:

Open Source & Linux Lab - http://wiki.osll.ru/


https://classroom.github.com/a/w-966goN
https://man7.org/linux/man-pages/man7/signal-safety.7.html
https://en.cppreference.com/w/cpp/utility/program/sig_atomic_t

Last
update:
2025/04/27
06:51

courses:high_performance_computing:producer_consumer http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1745725878

1. B HaweM producer/consumer HeobxoanMMo peann3o0BaTbCs NOTOKOBY 06paboTKy AaHHbIX Ans
3TUX Lenen 3anpeLlaeTcs 3arpy>kaTb Becb ann B O3Y, nHaye Ha 6onbwnx annax obpaboTka
He ByaeT nomewaTtbCs B orpaHnydeHns O3Y Ha BblYUCAUTENBHOM YCTPONCTBE.

2. pwn OTCYTCTBUN BXOAHbIX AAaHHbIX AA4pa Npoueccopa He A0JIKHbI BXOOCTYI0 €CTb TaKThl

Ina obecneyeHmsa MeXNOTOYHOr0 B3aMMOLENCTBMA OOMYCKAeTCa NCNOAb30BaHNe TosIbKo pthread
API. Ha Bxog npuioxxeHusa nepenaétca 2 apryMeHTa npu cTapTe UMEHHO B TaKow
nocsiefoBaTeNbHOCTH:

1. Yncno NoToKoB consumer
2. BepxHuin npefen cHa consumer B MUIJIMCEKYHAAX

B noTOK BbiBOJA [O/KHO MOMAAAaTh TONLKO PE3YibTUPYIOLLEE 3HAYEHNE, MO YMOSYAHUIO HNKAKOW
OTNIAZ0YHOW MM 3anNpPOCHON MHAOPMAaLIMK BLIBOAUTLCS HE AOJIKHO. B ciiyyae NeTeKTUPOBaHMS
OWNBOK HY)KHO BbllaBaTh HE HYJIEBOW KOJ, BO3BpaTa.

#include <iostream>
#include <fstream>
#include <pthread.h>

void* producer routine(void* arg
// Wait for consumer to start.
// You should use this waiting only for debugging your code
// For the final solution please remove this waiting

// Read data, loop through each value and update the value, notify
consumer, wait for consumer to process

std::ifstream ifs("in.txt");

//

void* consumer routine(void* arg
// notify about start
// you should use this notification only for debugging your code
// for the final solution please remove this notification

// for every update issued by producer, read the value and add to sum
// return pointer to result (for particular consumer)

void* consumer_interruptor routine(void* arg
// wait for consumers to start
// you should use this waiting only for debugging your code
// for the final solution please remove this waiting

// interrupt random consumer while producer is running

int run_threads

http://wiki.osll.ru/ Printed on 2026/02/01 23:09



2026/02/01 23:09 3/3 Posix threads

// start N threads and wait until they're done
// return aggregated sum of values

int main
std::cout << run_threads() << std::endl;

.
’

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:

Last update: 2025/04/27 06:51

Open Source & Linux Lab - http://wiki.osll.ru/


http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/courses:high_performance_computing:producer_consumer?rev=1745725878

	Posix threads

