
2026/02/03 12:06 1/6 Автоматическая векторизация в GCC для архитектуры PowerPC

Open Source & Linux Lab - http://wiki.osll.ru/

Автоматическая векторизация в GCC для
архитектуры PowerPC

исходный код программы на языке C:

#define N 16

void fbar (float *);
void ibar (int *);
void sbar (short *);

/* multiple loops */

foo (int n)
{
 float a[N+1];
 float b[N];
 float c[N];
 float d[N];
 int i;

 /* Strided access. Vectorizable on platforms that support load of strided
 accesses (extract of even/odd vector elements). */
 for (i = 0; i < N/2; i++){
 a[i] = b[2*i+1] * c[2*i+1] - b[2*i] * c[2*i];
 d[i] = b[2*i] * c[2*i+1] + b[2*i+1] * c[2*i];
 }
 fbar (a);

}

Строка компиляции: ppc-linux-gnu-gcc -O3 -maltivec -ftree-vectorizer-verbose=1 -ftree-
vectorize -S vect-1.c

Каждая команда PowerPC имеет длину 32 бита. Первые 6 бит определяют
команду, а остальные имеют различное значение, зависящее от команды. Тот
факт, что команды имеют фиксированную длину, позволяет процессору
выполнять их более эффективно. Поскольку команды PowerPC имеют длину
только 32 бита, внутри команд, загружающих постоянные величины, в наличии
имеется только 16 бит. Поэтому, так как адрес может быть до 64 бит в длину,
мы должны загружать его небольшими порциями. Значок @ в ассемблере
указывает ассемблеру использовать специальную форму.

Результат:

 .file "vect-1.c"

Last
update:
2008/02/02
22:02

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201978956

http://wiki.osll.ru/ Printed on 2026/02/03 12:06

 .section ".text"
 .align 2
 .globl foo
 .type foo, @function
foo:
 # Переместить значение из Link Register(похоже что это адрес текущей
инструкции) в регистр 0
 mflr 0

 # Store Word with Update (сохранить значение регистра 1(биты 32...63), в
адрес памяти(EA) = <значение регистра 1>+<число -224>
 # EA <- (1) - 224
 # MEM(EA, 4) <- (1)32:63
 # (1) <- EA
 stwu 1,-224(1)

 # Load Immediate Shifted(непосредственная загрузка)
 # Она загружает величину (биты 16-31 адреса LC1)
 # сдвигает число на 16 бит налево и затем сохраняет результат в регистре 11
 # Биты 16-31 регистра 11 содержат биты 16-31 адреса.
 lis 11,.LC1@ha

 lis 9,.LC0@ha

 # Load Address
 # la RT,SI(RS) (equivalent to: addi RT,RA,SI)
 # if RA = 0 then RT <- EXTS(SI)
 # else RT <- (RA) + EXTS(SI)
 # The sum (RA|0) + SI is placed into register RT.
 # Поместить в 11 регистр сумму 11 регистра и битов 0:15 LC1
 # Хы: в 11 регистре окажутся 0:31 биты из ячейки по адресу LC1
 la 11,.LC1@l(11)

 # в 10 регистре сумма значение 1 регистра + 16 (число)
 addi 10,1,16

 # Store Word
 # stw RS,D(RA)
 # if RA = 0 then b <- 0
 # else b <- (RA)
 # EA <- b + EXTS(D)
 # MEM(EA, 4) <- (RS)32:63
 # Let the effective address (EA) be the sum (RA|0)+ D. (RS)32:63 are
stored into the word in storage addressed by EA.
 # биты 32:63 регистра 0 будут помещены по адресу значение регистра 1 + 228 (в
биты 0-31?)
 # сначала мы отняли 224 потом прибавили 228, в итоге в регичтре 0 лежит начальное
для функции значение регситра 1 + 4
 stw 0,228(1)

2026/02/03 12:06 3/6 Автоматическая векторизация в GCC для архитектуры PowerPC

Open Source & Linux Lab - http://wiki.osll.ru/

 # прибавить к значению регистра 10 число 16 и положить результат в 8
 # до этого в регистре 10 был регистр 1 увеличенный на 16
 addi 8,10,16

 # Load Vector Indexed
 # lvx vD, rA, rB
 # Let the effective address EA be the sum of the contents of
register rA, or the value '0' if rA is equal '0', and the contents of
register rB
 # Load the quadword in memory addressed by the EA into vD
 # помещает в 11 регистр данные из 11 регистра (:
 lvx 11,0,11

 # в 11 регистр помещается сумма значения 1 регистра и 16
 addi 11,1,16

 # полностью копирует 11 регистр в 13
 lvx 13,0,11

 # в 11 регистр сумму значения 1 регистра и 80
 addi 11,1,80

 # скопировали значение 11 регистра в 10 регистр
 lvx 10,0,11

 addi 11,1,96

 lvx 1,0,11

 addi 11,1,112

 lvx 8,0,11

 # Поместить в 9 регистр сумму 9 регистра и битов 0:15 LC0
 # Хы: в 9 регистре окажутся 0:31 биты из ячейки по адресу LC0
 la 9,.LC0@l(9)

 addi 11,1,128

 lvx 7,0,9

 lvx 6,0,8

 addi 9,8,32

 lvx 0,0,11

 addi 8,8,16

 lvx 4,0,9

Last
update:
2008/02/02
22:02

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201978956

http://wiki.osll.ru/ Printed on 2026/02/03 12:06

 addi 9,1,144

 lvx 12,0,8

 # mr Rx, Ry на самом деле or Rx,Ry,Ry
 # or RA, RS, RB
 # RA <- (RS) | (RB)
 mr 3,9

 # Vector Permute
 # vperm vD, vA, vB, vC
 # temp[0:255] <- (vA) || (vB) // || --- конкатенация
 # do i=0 to 127 by 8
 # b <- (vC)[i+3:i+7] || 0b000
 # (vD)[i:i+7] <- temp[b:b+7]
 # end
 # Let the source vector be the concatenation of the contents of
register vA followed by the contents of register vB.
 # For each integer i in the range 0-15, the contents of the byte
element in the source vector specisied in bits [3-7]
 # of byte element i in vC are placed into byte element i of register
vD.
 # судя из картинки в документации работает так:
 # vA и vB -- исходные вектора по 16 8-битных элементов. после их
конкатенции все элементы пронумерованы от 0x00 до 0x1F
 # в vC[i] написано число от 0x00 до 0x1F и означает какой из 32 элементов vA||vB
положить в vD[i]
 vperm 3,8,0,11

 vperm 5,10,1,11
 vperm 9,13,6,11
 vperm 8,8,0,7
 vperm 10,10,1,7
 vperm 13,13,6,7

 vspltisw 0,-1
 vslw 0,0,0
 vmaddfp 13,13,10,0
 vmaddfp 9,9,5,0
 vsubfp 13,13,9
 stvx 13,0,9
 addi 9,9,16
 vperm 11,12,4,11
 vperm 12,12,4,7
 vmaddfp 11,11,3,0
 vmaddfp 12,12,8,0
 vsubfp 12,12,11
 stvx 12,0,9
 vor 1,0,0
 bl fbar

2026/02/03 12:06 5/6 Автоматическая векторизация в GCC для архитектуры PowerPC

Open Source & Linux Lab - http://wiki.osll.ru/

 lwz 0,228(1)
 addi 1,1,224
 mtlr 0
 blr
 .size foo, .-foo
 .section .rodata.cst16,"aM",@progbits,16
 .align 4
.LC0:
 .byte 4
 .byte 5
 .byte 6
 .byte 7
 .byte 12
 .byte 13
 .byte 14
 .byte 15
 .byte 20
 .byte 21
 .byte 22
 .byte 23
 .byte 28
 .byte 29
 .byte 30
 .byte 31
.LC1:
 .byte 0
 .byte 1
 .byte 2
 .byte 3
 .byte 8
 .byte 9
 .byte 10
 .byte 11
 .byte 16
 .byte 17
 .byte 18
 .byte 19
 .byte 24
 .byte 25
 .byte 26
 .byte 27
 .ident "GCC: (GNU) 4.3.0 20080202 (experimental)"
 .section .note.GNU-stack,"",@progbits

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201978956

Last update: 2008/02/02 22:02

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201978956

Last
update:
2008/02/02
22:02

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201978956

http://wiki.osll.ru/ Printed on 2026/02/03 12:06

	Автоматическая векторизация в GCC для архитектуры PowerPC

