2026/02/03 12:46 1/7 ABToMaTunyeckas BekTopusaumsa B GCC gnsa apxutekTtypsl PowerPC

ABTOMaTuyeckana Bektopusaumusa B GCC gna
apxutektypbl PowerPC

NCXOAHbIN KO NporpamMMbl Ha a3bike C:
#define N 16

void fbar (float
void ibar (int
void sbar (short

/* multiple loops */
foo (int n

float
float
float
float
int i

o N T Y
==2=22

/* Strided access. Vectorizable on platforms that support load of strided
accesses (extract of even/odd vector elements). */
i i N i

all
d i bl2*1 c[2*i bl[2*1 c[2*i

fbar (a

Ctpoka komnunsaumu: ppc-linux-gnu-gcc -03 -maltivec -ftree-vectorizer-verbose=1 -ftree-
vectorize -S vect-1.c

Kaxpas komaHga PowerPC nmeet gnuHy 32 buta. MNMepsble 6 6UT onpenensoT
KOMaHQAy, a oCTajibHble UMEIKT pa3/iMyHOe 3HaYeHune, 3aBucCsLLEee OT KOMaHAabl. ToT
PaKT, 4YTO KOMaHAbl UMelT (PUKCUPOBAHHYIO AJIMHY, MO3BOAAET MpoLeccopy
BbINOMHATL UX bonee 3hpekTMBHO. NMoCKONbKY KOMaHAbl PowerPC nmeT AJINHY
TOJIbKO 32 buTa, BHYTPY KOMaH/, 3arpy>XXatLwmx NOCTOAHHbIE BEIUYUHbBI, B HAJINYUK
nMeeTcsa ToNbko 16 6uT. M03TOMyY, Tak Kak agpec MoXeT 6biTb 40 64 6UT B ASINHY,
Mbl LOJDKHbI 3arpyXxaTb ero Hebonbwumm nopumsammn. 3Ha4oK @ B accembnepe
yKa3blBaeT accembnepy ncnosb3oBaTh CreymanbHyo opmy.

Pe3ynbTart:

.file "vect-1.c"

Open Source & Linux Lab - http://wiki.osll.ru/

Last
update:
2008/02/03
00:15

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201986928

.section "Ltext"
.align
.globl foo
.type foo, @function
foo:
MNepemecTnTb 3Ha4YeHne u3 Link Register (noxoxe 4To 3TO agpec TekyLlen
NHCTPYKLUUWN) B PErNCTP
mflr

Store Word with Update (coxpaHuTb 3HayeHue peructpa L(6uTbl 32. .. , B
agpec namaTn (EA) = <3Ha4yeHwue perncrtpa 1>+<4ucno - >
EA <- -
MEM(EA, <-
<- EA
stwu 1, -

Load Immediate Shifted(HenocpencTBeHHas 3arpys3ka
OHa 3arpyxaeT Be/iMinHy (butel 16-31 agpeca LC1
cOoBuraeT 4ncao Ha 16 6T HaneBo 1 3aTEM COXpaHAeT pe3yNbTaT B perncrTpe
buTbl 16-31 peructpa 11 cogepxaT butbl 16-31 agpeca.
lis , .LC1l@ha

lis 9, .LCO@ha

Load Address
la RT,SI(RS) (equivalent to: addi RT,RA,SI

if RA = 0 then RT <- EXTS(SI
else RT <- (RA) + EXTS(SI
The sum (RA| + SI 1is placed register RT.
MNomecTnTb B pPerucTp cymmy peructpa n butos 0 : LC1
Xbl: B perncTpe okaxyTca 0:31 6uTbl 3 a4enkun no agpecy LC1
la , .LC1@l
B 10 permuctpe cyMma 3HavyeHue 1 peructpa + 4ymcno
addi 1,
Store Word
stw RS,D(RA
if RA = 0 then b <-
else b <- (RA
EA <- b + EXTS(D
MEM(EA, <- (RS :
Let the effective address (EA) be the sum (RA|O)+ D. (RS : are
stored the word storage addressed by EA.
6UTbl 32:63 pernctpa O ByayT noMeLLeHbl N0 agpecy 3Ha4YeHue peructpa 1 + B
onTbl 0-317
CHaYana Mbl OTHANN noTtom npubasnam , BuTOre B pernyrpe 0 NexuT HavyaslbHoe
0N9 YHKLMM 3HAYeHne percutpa 1 +
stw 0,

http://wiki.osll.ru/ Printed on 2026/02/03 12:46

2026/02/03 12:46 3/7 ABToMaTunyeckas BekTopusaumsa B GCC gnsa apxutekTtypsl PowerPC

npmbaBUTb K 3HaYeHMIO pernctpa 10 yncno 16 1 NosfoXuTb pesysibTaT B
no 3Toro B peructpe 10 6o pernctp 1 yBesiMyeHHbIN Ha
addi 8,10,

Load Vector Indexed
lvx vD, rA, rB
Let the effective address EA be the sum of the contents of

register rA, the value '0' if rA is equal '0', the contents of
register rB
Load the quadword memory addressed by the EA vD
nomewaeT B 11 perncTp oaHHble n3 11 perncrpa
lvx ,0,

B 11 perncTp nomMeLwaeTcs cyMMa 3HayeHusa 1 peructpa u
addi 1,

NONHOCTbLIO KoNupyeT perucTp B
lvx , 0,

B 11 perncTp cyMMmy 3HayeHust 1 pernctpa u
addi 1,

CKOMMpPOBasM 3Ha4yeHne perncTpa B perncTp
lvx ,0,

addi 1,

lvx 1,0,

addi 1,

lvx 8,0,
MomecTnTb B 9 pernctp cymmy 9 pernctpa n butos 0: LCoO
Xbl: B 9 pernctpe okaxyTtcs 0:31 6utel u3 s4enkn no agpecy LCO

la 9, .LCO@L

addi 1,

lvx 7,0,

lvx 6,0,

addi 9,8,

lvx 0,0,

addi 8,8,

lvx 4,0,

Open Source & Linux Lab - http://wiki.osll.ru/

Last
update:
2008/02/03
00:15

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201986928

addi 9,1,
lvx ,0,

mr Rx, Ry Ha camom pene Rx,Ry,Ry
RA, RS, RB
RA <- (RS) | (RB

mr 3,

Vector Permute
vperm vD, vA, vB, vC

temp | 0O: <- (vA) || (vB) // || --- KOHKaTeHauus
do i=0 to by

b <- (vC)[i+3:i+ || 0b00OO

vD)[i:i+7] <- temp[b:b+

end

Let the source vector be the concatenation of the contents of
register vA followed by the contents of register vB.

For each integer 1 the range 0-15, the contents of the byte
element the source vector specisied bits -
of byte element 1 vC are placed byte element i of register
vD.
Cyns U3 KapTUHKK B LOKYMeHTauun paboTaeT Tak:
VA nvB -- ncxogHble BeKTOpa Mo -BUTHbIX 3/1eMEHTOB . MoCe nux
KOHKaTEeHL N BCe 3/IeMEeHTbl MPOHYMepOoBaHbl OT 0o
#8 vC|i| HanucaHo Yncno ot [0 M 03Ha4YaeT Kakon n3 32 anemeHToB VA||vB
noNoXnTb B vD| 1
vperm 3,8,0,
vperm 5,10,1,
vperm 9,13,6,
vperm 8,8,0,
vperm ,10,1,
vperm ,13,6,
Vector Splat Immediate Signed Word
vspltisw vD, SIMM // SIMM - this Immediate field is used
to specify a bit) signed integer
do i=0 to by
vD) [i:i+ <- SignExtend(SIMM,
end
Each element of wspltisq is a word. The value of the SIMM field,
sign-extended to bits, is replicated each element of register vD
perncTp Hosb bygeT 3abut Yncnamu -
vspltisw 0, -

Vector Shift Left Integer Word
wslw vD, VvA, vB

do i=0 to by

sh <- (vB)[i+27:i+

http://wiki.osll.ru/ Printed on 2026/02/03 12:46

2026/02/03 12:46 5/7 ABToMaTunyeckas BekTopusaumsa B GCC gnsa apxutekTtypsl PowerPC

vd) [1:i+1] <- (vA)[i:i+ <<ui sh
end
Each element a word. Each word element register vA is shifted
left by the number of bits specifed the
low-order bits of the corresponding word element register vB.
Bits shifted to bit of the word
element are lost. Zeros are supplied to the vacated bits on the
roght. The result is placed the corresponding word element of register
vD
Ka)xpoe C/10BO B permcTpe CABUraeTCs BAEBO Ha Kakoe - TO Y4Mcio 6uT.
vslw 0,0,
Vector Multiply Floating Point
vmaddfp vD, vA, vC, vB
vD[i] = vA[i|*vC 1/+VvB|1i
vmaddfp , 13,10,
vmaddfp 9,9,5,
Vector Substract Floating Point
vsubfp vD, vA, vB
vD[i] = vA[i]-VvB/i
vsubfp , 13,
Store Vector Indexed
stvx vS,rA,rB
if rA=0 then b «
else b « (rA
EA <« (b + (rB)) & _FFFF_FFFF_FFFO
MEM(EA, < (VS
Let the effective address EA be the result of ANDing the sum of
the contents of register rA, the value ‘0’ if
rA is equal to ‘07, the contents of register rB with
_FFFF_FFFF_FFFO.
The contents of register vS are stored the quadword addressed
by EA. Figure 6-5 shows how a store
instruction is performed for a vector register.
stvx ,0,
addi 9,9,
vperm , 12,4,
vperm ,12,4,
vmaddfp , 11,3,
vmaddfp ,12,8,
vsubfp , 12,
stvx ,0,

Vector Logical
vor vD,vA,vB
vor 1,0,

Open Source & Linux Lab - http://wiki.osll.ru/

Last
update:
2008/02/03
00:15

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201986928

Bbi3oB (hyHKUmMm fbar
bl fbar

lwz 0,228(1
addi 1,1,224
Move To Link Register
mtlr O
B OOKYMEHTauMM He Hallen, HO AyMaeTcs YTo 3To Tuna return (: Tem 6osee 4TO Mbl
TOJIbKO YTO 3anmMcanu agpec cienyowen KoMaHabl

blr
.size foo, .-foo
.section .rodata.cstl16, "aM",@progbits, 16
.align 4
.LCO:
.byte 4
.byte 5
.byte 6
.byte 7
.byte 12
.byte 13
.byte 14
.byte 15
.byte 20
.byte 21
.byte 22
.byte 23
.byte 28
.byte 29
.byte 30
.byte 31
.LC1:
.byte 0
.byte 1
.byte 2
.byte 3
.byte 8
.byte 9
.byte 10
.byte 11
.byte 16
.byte 17
.byte 18
.byte 19
.byte 24
.byte 25
.byte 26
.byte 27

.ident "GCC: (GNU) 4.3.0 20080202 (experimental)"

http://wiki.osll.ru/ Printed on 2026/02/03 12:46

2026/02/03 12:46 777 ABToMaTunyeckas BekTopusaumsa B GCC gnsa apxutekTtypsl PowerPC

.section .note.GNU-stack,"",@progbits

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201986928

Last update: 2008/02/03 00:15

Open Source & Linux Lab - http://wiki.osll.ru/

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1201986928

	Автоматическая векторизация в GCC для архитектуры PowerPC

