2026/02/03 13:04 1/7 ABToMaTunyeckas BekTopusaumsa B GCC gnsa apxutekTtypsl PowerPC

ABTOMaTuyeckana Bektopusaumusa B GCC gna
apxutektypbl PowerPC

NCXOAHbIN KO NporpamMMbl Ha a3bike C:
#define N 16

void fbar (float
void ibar (int
void sbar (short

/* multiple loops */
foo (int n

float
float
float
float
int i

o N T Y
==2=22

/* Strided access. Vectorizable on platforms that support load of strided
accesses (extract of even/odd vector elements). */
i i N i

all
d i bl2*1 c[2*i bl[2*1 c[2*i

fbar (a

Ctpoka komnunsaumu: ppc-linux-gnu-gcc -03 -maltivec -ftree-vectorizer-verbose=1 -ftree-
vectorize -S vect-1.c

Kaxpas komaHga PowerPC nmeet gnuHy 32 buta. MNMepsble 6 6UT onpenensoT
KOMaHQAy, a oCTajibHble UMEIKT pa3/iMyHOe 3HaYeHune, 3aBucCsLLEee OT KOMaHAabl. ToT
PaKT, 4YTO KOMaHAbl UMelT (PUKCUPOBAHHYIO AJIMHY, MO3BOAAET MpoLeccopy
BbINOMHATL UX bonee 3hpekTMBHO. NMoCKONbKY KOMaHAbl PowerPC nmeT AJINHY
TOJIbKO 32 buTa, BHYTPY KOMaH/, 3arpy>XXatLwmx NOCTOAHHbIE BEIUYUHbBI, B HAJINYUK
nMeeTcsa ToNbko 16 6uT. M03TOMyY, Tak Kak agpec MoXeT 6biTb 40 64 6UT B ASINHY,
Mbl LOJDKHbI 3arpyXxaTb ero Hebonbwumm nopumsammn. 3Ha4oK @ B accembnepe
yKa3blBaeT accembnepy ncnosb3oBaTh CreymanbHyo opmy.

Pe3ynbTart:

.file "vect-1.c"

Open Source & Linux Lab - http://wiki.osll.ru/

Last
update:
2008/02/04
04:25

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1202088330

.section "L text"
.align
.globl foo
.type foo, @function
foo:
MepemecTnTb 3Ha4YeHne u3 Link Register (agpec Bo3BpaTa) B perucTp
mflr
Store Word with Update (coxpaHuTb 3HayYeHue peructpa L (6utbl 32. .. , B
agpec namATn (EA) = <3Ha4yeHwue perncrtpa 1>+<4uncno - >
EA <- -
MEM(EA, <-
<- EA

3TO - - opraHM3aunsa Kagpa CTeka 1 NoMeLLeHne TekyLLero ykasaTtensa cteka (rl) Ha gHo

Kaapa
stwu 1, -

Load Immediate Shifted(HenocpencTBeHHas 3arpys3ka
OHa 3arpyxaeT Be/iMy4nHy (butol 16-31 agpeca LC1
cOoBuraet 4ncio Ha 16 6T HaneBo 1 3aTeM COoXpaHaeT pe3yNibTaT B perncrpe
butbl 16-31 perucTpa cogepxat butbl 16-31 agpeca.
lis ,.LC1l@ha

lis 9, .LCO@ha

Load Address
la RT,SI(RS) (equivalent to: addi RT,RA,SI

if RA = 0 then RT <- EXTS(SI
else RT <- (RA) + EXTS(SI
The sum (RA| + SI is placed register RT.
MNomecTnTb B pPerucTp cymmy pernctpa n butos 0: LC1
#B perncTpe oKaxeTcs NosiHbIN agpec nepemeHHon . LC1
la , .LC1@l
B 10 pernctpe cyMma 3HavyeHue 1 peructpa + 4ymcno
addi 1,
Store Word
stw RS,D(RA
if RA = 0 then b <-
else b <- (RA
EA <- b + EXTS(D
MEM(EA, <- (RS :
Let the effective address (EA) be the sum (RA|O)+ D. (RS : are
stored the word storage addressed by EA.
6UTbl 32:63 pernctpa O byayT noMeLLeHbl N0 agpecy 3Ha4YeHue peructpa 1 + B
ot 0-317
CHa4ana Mbl OTHAAN noTtom npubasnam , BuUTOre B pernytpe 0 NexnT HavasibHoe

ONna PYHKLUWKM 3HaYeHne percutpa 1 +
370 - - NoMellleHMe afpeca Bo3BpaTa (B3aToro U3 LR) Ha BepLlUMHY TekyLlero Kagpa

http://wiki.osll.ru/ Printed on 2026/02/03 13:04

2026/02/03 13:04 3/7 ABToMaTunyeckas BekTopusaumsa B GCC gnsa apxutekTtypsl PowerPC

CTeKa.
stw 0,

NpnbaBUTb K 3HaYeHUI0 pernctpa 10 ynucno 16 1 NonoXnTb pe3ynbTaT B
no 3710oro B peructpe 10 6611 pernuctp 1 yBeNMYeHHbIN Ha
addi 8,10,

Load Vector Indexed
lvx vD, rA, rB
Let the effective address EA be the sum of the contents of

register rA, the value '0' if rA is equal '0', the contents of
register rB
Load the quadword memory addressed by the EA vD

nomewaeT B pernctp v11l paHHble no agpecy B rll
370 - - 3arpy3ka Tabamupl .LC1 Bv11l. .LC1 -- Tabnuua nepeHoca YeTHbiX float

lvx ,0,
B 11 permcTtp noMewaeTca CyMMa 3Ha4yeHma 1 pernctpa u - - agpec nepemMeHHon b
addi 1,
#9370 - - 3arpy3ka b[0:3] B v13
lvx , 0,
B 11 pernctp cymmy 3HadyeHusa 1 peructpa u - - ajpec nepeMeHHoun ?c
addi 1,
#3T0 - - 3arpy3ka ?c/0:3] B v10
lvx ,0,
addi 1,
cl4:7/ B Vvl
lvx 1,0,
addi 1,
c[8: B v8
lvx 8,0,
MomecTuTb B 9 pernuctp cymmy 9 peructpa v bmutos 0: LCO
B O perucTpe oKaxxeTcs MnoJjiHbIN agpec nepemeHHon . LCO
la 9, .LCOEL
addi 1,

370 - - 3arpy3ka Tabanupl .LCO B V7
lvx 7,0,

bl4: B Vb
lvx 6,0,

r9 --appec b
addi 9,8,

Open Source & Linux Lab - http://wiki.osll.ru/

Last
update:
2008/02/04
04:25

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1202088330

C : B vO

r8 --apgpec b
addi 8,8,

b C B v4
lvx 4,0,

r9 --apgpec a
addi 9,1,

bl8: B v12
lvx ,0,

mr Rx, Ry Ha camom pene Rx,Ry,Ry
RA, RS, RB
RA <- (RS) | (RB

mr 3,

Vector Permute
vperm vD, vA, vB, vC

templO: <- (vA) || (vB) // || --- KoHKaTeHauus
do i=0 to by
b <- (vC)[i+3:i+ || Ob00O
vD)[i:i+7] <- temp|b:b+
end
Let the source vector be the concatenation of the contents of
register vA followed by the contents of register vB.
For each integer i the range 0-15, the contents of the byte
element the source vector specisied bits -
of byte element i vC are placed byte element i of register
vD.
Cynsa N3 KapTUHKK B LOKyMEeHTauumn paboTaeT Tak:
VA nvB -- ncxofHble BEKTOPaA MO -BUTHBIX 31EMEHTOB . NOCSe NX
KOHKaTEHLMWN BCE /1IEMEHTbI MPOHYMEepoBaHbl OT Lo
#B8 vC|i| HanucaHo Yncno ot [0 1 03Ha4YaeT Kakon n3 32 snemeHToB VA||vB

nonoXutb B vD|[1

370 - - nomeweHne c|8,10,12, B v3
vperm 3,8,0,

3TO - - noMeweHne c(0,2,4, B V5
vperm 5,10,1,

3T0 - - nomeweHne bl0,2,4,61 B V9
vperm 9,13,6,

3TO - - noMeweHne c|(9,11,13, B v8
vperm 8,8,0,

37O - - noMmelleHne c(1,3,5,7] B v10

http://wiki.osll.ru/ Printed on 2026/02/03 13:04

2026/02/03 13:04 5/7 ABToMaTunyeckas BekTopusaumsa B GCC gnsa apxutekTtypsl PowerPC

vperm ,10,1,
5T0 - - noMeweHme bl(1,3,5, B v13
vperm ,13,6,

Vector Splat Immediate Signed Word

vspltisw vD, SIMM // SIMM - this Immediate field is used
to specify a bit) signed integer

do i=0 to by

vD) [i:i+ <- SignExtend(SIMM,

end

Each element of wspltisq is a word. The value of the SIMM field,
sign-extended to bits, is replicated each element of register vD

perncTp Hosb bygeT 3abut Yyncnamu -
vspltisw O, -

Vector Shift Left Integer Word

wslw vD, VvA, vB

do i=0 to by

sh <- (vB)[i+27:i+

vd) [1i:i+1] <- (VvA)[i:i+ <<ui sh

end

Each element a word. Each word element register vA is shifted
left by the number of bits specifed the

low-order 5 bits of the corresponding word element register vB.
Bits shifted to bit of the word

element are lost. Zeros are supplied to the vacated bits on the
roght. The result is placed the corresponding word element of register

vD
Ka)x[oe C/I0BO B perncTpe cABUraeTcs BJeBO Ha 6uT, nonyyvaeTcs

vslw 0,0,

Vector Multiply Floating Point
vmaddfp vD, vA, vC, vB
vD[i] = vA[i]*vCli/+VvB|1i

v13 = b[1,3,5,7]*c[1,3,5,7]+
vmaddfp ,13,10,

v9 = b[0,2,4,6]*c[0,2,4,5]+
vmaddfp 9,9,5,

Vector Substract Floating Point
vsubfp vD, vA, vB

vDli] = vA[i]|-vB[1
V13 = b 1212 *C] ’ 'b &<y *C] ’
vsubfp ,13,

Store Vector Indexed
stvx vS,rA,rB

Open Source & Linux Lab - http://wiki.osll.ru/

Last
update:
2008/02/04
04:25

etc:common_activities:gcc_vectorization:autovect_ppc http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1202088330

if rA=0 then b «
else b « (rA

EA <« (b + (rB)) & _FFFF_FFFF_FFFO

MEM(EA, « (VS

Let the effective address EA be the result of ANDing the sum of
the contents of register rA, the value ‘0’ if

rA is equal to ‘0’, the contents of register rB with

_FFFF_FFFF_FFFO.

The contents of register vS are stored the quadword addressed

by EA. Figure 6-5 shows how a store

instruction is performed for a vector register.

a =b *c -b *c

a = *c -b *c

a = *c -b *c

a =b *C -b *c
stvx ,0,

r9 --agpec a

addi 9,9,
3T0 - - noMeweHne b(8,10,12, B vll
vperm ,12,4,
370 - - noMelleHne b[9,11,13, B v12
vperm ,12,4,
vll = b(8,10,12, *c[8,10,12, +
vmaddfp ,11,3,
vl12 = b[9,11,13, *c[9,11,13, +
vmaddfp ,12,8,
v12 = b[9,11,13, *c[9,11,13, -b[8,10,12, *c[8,10,12,
vsubfp , 12,
a =b *c -b *c
a = *c -b *c
a = *C -b (e
a =b *c -b *c
stvx ,0,

Vector Logical
vor vD,vA,vB
vor 1,0,

Bbi30B (pyHKUMKM fbar
bl fbar
lwz 0,
BOCCTaHOBJIEHMNE NMpeablayLlero Kagpa cTeka
addi 1,1,
Move To Link Register

http://wiki.osll.ru/ Printed on 2026/02/03 13:04

2026/02/03 13:04 717 ABToMaTunyeckas BekTopusaumsa B GCC gnsa apxutekTtypsl PowerPC

mtlr O
BO3BpaT M3 PYHKLUN
blr

.Size foo, .-foo
.section .rodata.cstl6, "aM",@progbits, 16
.align 4

.LCO:
.byte 4
.byte 5
.byte 6
.byte 7
.byte 12
.byte 13
.byte 14
.byte 15
.byte 20
.byte 21
.byte 22
.byte 23
.byte 28
.byte 29
.byte 30
.byte 31

.LC1:
.byte 0
.byte 1
.byte 2
.byte 3
.byte 8
.byte 9
.byte 10
.byte 11
.byte 16
.byte 17
.byte 18
.byte 19
.byte 24
.byte 25
.byte 26
.byte 27
.ident "GCC: (GNU) 4.3.0 20080202 (experimental)"
.section .note.GNU-stack,"",@progbits

From:

http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1202088330

Last update: 2008/02/04 04:25

Open Source & Linux Lab - http://wiki.osll.ru/

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:common_activities:gcc_vectorization:autovect_ppc?rev=1202088330

	Автоматическая векторизация в GCC для архитектуры PowerPC

