
2026/01/11 01:19 1/14 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

Исследование вопроса

Текущие задачи
Детали алгоритма

План

Найти hotspots1.
Сравнить их относительный вклад во время работы2.
Наметить пути оптимизации3.

Hotspots

Профилировал gcc/gcov. Для этого патчил Makefile (cd src ; patch -p1 Makefile-profiling.patch):

diff -ruN src-org/Makefile src1/Makefile
--- src-org/Makefile  2007-09-17 17:43:08.000000000 +0400
+++ src1/Makefile 2007-10-31 22:58:53.000000000 +0300
@@ -59,14 +59,14 @@
 CINC       = -I$(SRC_DIR)
 CDEFS      =
 COBJ       = -c -o$(OBJ_DIR)/$@
-CDEFOPT    = -O2
+CDEFOPT    = -g -pg -fprofile-arcs -ftest-coverage
 COPT       =
-CFLAGS     =
+CFLAGS     = -O3
 CFLAGS_ALL = $(CFLAGS) $(CINC) $(CDEFS) $(CDEFOPT) $(CPROC) $(CPLAT)

 LD         = g++
 LDPLAT     =
-LDFLAGS    =
+LDFLAGS    = -g -pg -ax -fprofile-arcs -ftest-coverage
 LDOUTOPT   = -o "$(OUT_DIR)/$(BENCHMARK)"
 LIBS       = -lm -lc
 LIBS_ALL   = $(LIBS)

Результаты (./sunset -cfg ../input/Sample01.cfg) – основное:

        -:
729:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        -:  730:!!!!!!!!!!!!!!!!! Water surface modelling
!!!!!!!!!!!!!!!!!!!!!!!!
        -:
731:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        -:  732:*/

http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2_tasks
http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:algo_details
http://wiki.osll.ru/lib/exe/fetch.php/etc:common_activities:intel_students_cup:sunset.cpp.gcov-dumb.txt


Last update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

http://wiki.osll.ru/ Printed on 2026/01/11 01:19

247782400:  733:                for(t = 0; t < NKMAX; t++)
        -:  734:                {
240217600:  735:                    OT  = flOmega[t] * flTime;
240217600:  736:                    KX1 = flK[t] * flDecartX[i][j];
240217600:  737:                    KY1 = flK[t] * flDecartY[i][j];
        -:  738:
7927180800:  739:                    for(l = 0; l < iAngleHarmNum; l++)
        -:  740:                    {
7686963200:  741:                        iSinIndex1 = t * iAngleHarmNum + l;
        -:  742:
flArgSin[currentthread].aptr[iSinIndex1] = OT -
        -:  743:                            KX1 * flAzimuthCosFi[l] - KY1 *
flAzimuthSinFi[l] +
7686963200:  744:                            flRandomPhase[t*iAngleHarmNum +
l];
        -:  745:                    } /* end for l */
        -:  746:                } /* end for t */
        -:  747:
  7564800:  748:                pFlTmp = flArgSin[currentthread].aptr;
        -:  749:
        -:  750:                #pragma ivdep
7753920000:  751:                for(t=0; t<iWaveMeshSize; t++)
7746355200:  752:                    pFlTmp[t] = (float)sinf(pFlTmp[t]);
        -:  753:
        -:  754:                /* initialize the values of derivation */
  7564800:  755:                flDerivX = 0.0f;
  7564800:  756:                flDerivY = 0.0f;
        -:  757:
        -:  758:                /* dot product to compute derivation */
7753920000:  759:                for(t = 0; t < iWaveMeshSize; t++)
        -:  760:                {
7746355200:  761:                    flDerivX += pFlTmp[t] *
flAmplitudeX[t];
7746355200:  762:                    flDerivY += pFlTmp[t] *
flAmplitudeY[t];
        -:  763:                }
        -:  764:

Интерпретация: алгоритм проходит по всем точкам изображения (7564800 действий). Для
прообраза каждой точки избражения, находящегося на поверхности воды рассчитывается
iWaveHarmNum * iAngleHarmNum дополнительных значений (во всех примерах – 32*32 ==
1024). Это – аргументы синусов, сами синусы и скалярные произведения амплитуд на эти
синусы (7746355200 действий).

Начальное время на моей машине: 45.457/кадр



2026/01/11 01:19 3/14 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

Вклад во время

закомментировал блок целиком:

diff -ruN src-org/sunset.cpp src1/sunset.cpp
--- src-org/sunset.cpp  2007-09-16 12:04:44.000000000 +0400
+++ src1/sunset.cpp 2007-10-31 23:34:04.000000000 +0300
@@ -730,6 +730,11 @@
 !!!!!!!!!!!!!!!!! Water surface modelling !!!!!!!!!!!!!!!!!!!!!!!!
 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 */
+                /* initialize the values of derivation */
+                flDerivX = 0.0f;
+                flDerivY = 0.0f;
+
+#if 0
                 for(t = 0; t < NKMAX; t++)
                 {
                     OT  = flOmega[t] * flTime;
@@ -751,17 +756,13 @@
                 for(t=0; t<iWaveMeshSize; t++)
                     pFlTmp[t] = (float)sinf(pFlTmp[t]);

-                /* initialize the values of derivation */
-                flDerivX = 0.0f;
-                flDerivY = 0.0f;
-
                 /* dot product to compute derivation */
                 for(t = 0; t < iWaveMeshSize; t++)
                 {
                     flDerivX += pFlTmp[t] * flAmplitudeX[t];
                     flDerivY += pFlTmp[t] * flAmplitudeY[t];
                 }
-
+#endif
                 /* Near horizont area correction */
                 flDerivX *= P2;
                 flDerivY *= P2;

Время: 1.225/кадр.

Оставил только расчет аргументов. Время: 4.771/кадр.1.
Оставил только расчет скалярного произведения. Время: 2.436/кадр.2.

Результат: основное время уходит в тригонометрию, затем – в генерацию аргументов, затем –
в скалярное произведение.



Last update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

http://wiki.osll.ru/ Printed on 2026/01/11 01:19

Пути оптимизации

Очевидные шаги

включить openmp, заготовки которого уже есть в коде (: (ускорение пропорционально1.
количеству вычислительных ядер)
очень много математики. однако нет ни специальных значений аргументов, ни проверок2.
matherr, ничего такого. Включить на полную оптимизацию математических вызовов.
(ускорение до 35.943/кадр или ~ в 1.2 раза)

diff -ruN src-org/Makefile src/Makefile
--- src-org/Makefile  2007-09-17 17:43:08.000000000 +0400
+++ src/Makefile  2007-10-23 22:11:17.000000000 +0400
@@ -59,14 +59,14 @@
 CINC       = -I$(SRC_DIR)
 CDEFS      =
 COBJ       = -c -o$(OBJ_DIR)/$@
-CDEFOPT    = -O2
+CDEFOPT    = -g -pg -fprofile-arcs -ftest-coverage
 COPT       =
-CFLAGS     =
+CFLAGS     = -O3 -ffast-math -ffinite-math-only -fno-math-errno -funsafe-
math-optimizations -fno-trapping-math -march=prescott -fopenmp
 CFLAGS_ALL = $(CFLAGS) $(CINC) $(CDEFS) $(CDEFOPT) $(CPROC) $(CPLAT)

 LD         = g++
 LDPLAT     =
-LDFLAGS    =
+LDFLAGS    = -g -pg -ax -fprofile-arcs -ftest-coverage -fopenmp
 LDOUTOPT   = -o "$(OUT_DIR)/$(BENCHMARK)"
 LIBS       = -lm -lc
 LIBS_ALL   = $(LIBS)

Менее очевидные шаги

Использование Math Kernel Library

Math Kernel Library(Описание)

библиотека в основном хорошо реализует матричные операции;

Для исследования Intel Kernel Math Library написал следующее:

Код “глупой” программы, которая вызывает не думая стандартный синус.

#include <stdlib.h>
#include <math.h>

http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.google.ru/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fwww.intel.com%2Fsoftware%2Fproducts%2Fmkl%2Ftechtopics%2Fmklman52.pdf&ei=txIpR7fmGIfs0AS7oMj7Aw&usg=AFQjCNGAKhvQ7sI3I9hp7BI6QU5mxa-RUg&sig2=ywkFBVb2LBI5chtUSOhN3Q


2026/01/11 01:19 5/14 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

 
int main()
{
  double X[32][32];
  double F[32][32];
 
  for(int i=0; i<32; ++i)
    for(int j=0; j<32; ++j)
      X[i][j] = rand()%1024;
 
  for(int x=0;x<800;++x)
    for(int y=0;y<600;++y)
      for(int i=0;i<32;++i)
        for(int j=0;j<32;++j)
           F[i][j] = sinf(X[i][j]);
  return 0;
}

Код программы, с использованием MKL: В нем применил функцию, вычисляющую синус
элементов вектора.

#include "mkl.h"
#include <stdlib.h>
 
int main()
{
  double X[32][32];
  double F[32][32];
 
  for(int i=0; i<32; ++i)
    for(int j=0; j<32; ++j)
      X[i][j] = rand()%1024;
 
  for(int x=0;x<800;++x)
    for(int y=0;y<600;++y)
      vdSin(32*32,(const double *)X,(double *)F);
  return 0;
}

MakeFile:

default: stupid fast

main.o: main.cpp
        g++ main.cpp -c -o main.o

stupid: main.o
        g++ main.o -o stupid
clean:
        rm -f main.o stupid
fast: imkl_main.o



Last update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

http://wiki.osll.ru/ Printed on 2026/01/11 01:19

        g++ -L/opt/intel/mkl/9.1.023/lib/32 imkl_main.o -lguide -lmkl_p4m -
lmkl_ia32 -lm -lirc -o fast

imkl_main.o: imkl_main.cpp
        g++ -I/opt/intel/mkl/9.1.023/include -c imkl_main.cpp -o imkl_main.o

Третьим шагом было изменение в “быстрой” программе всех double на float. и вызов функции
vsSin Результат запуска:

make && time ./stupid && time ./fast && time ./floatfast
 
real    0m41.288s
user    0m39.579s
sys     0m0.143s
 
real    0m18.878s
user    0m18.158s
sys     0m0.086s
 
real    0m7.799s
user    0m7.412s
sys     0m0.049s

помимо всего прочего MKL имеет реализацию одновременного вычисления синуса и косинуса в
одной функции

Очевидно, что если в “тупую” программу добавить рядом с вызовом синуса вызов косинуса, то
врямя возрастет в два раза, что и произошло при опытной проверке.

В случае же с MKL, интересней. Далее сравнительные времена выполнения двух программ с
применением MKL:

вызываются vsSin и vsCos1.
вызывается vsSinCos2.

real    0m16.126s
user    0m15.261s
sys     0m0.026s

real    0m13.289s
user    0m12.670s
sys     0m0.028s

Использование Intel C Compiler

Компилятор(Описание)

должен позволить автоматически ипользовать SIMD команды (SSE, SSE2…) для
оптимизации вычислений в основном в циклах;

http://www.intel.com/cd/software/products/asmo-na/eng/284132.htm
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/clin/277618.htm


2026/01/11 01:19 7/14 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

возможно подскажет где что можно ещё распараллелить;

Результаты

Использование Integrated Performance Primitives

Intel Performance Primitives(Описание)

как заявляется производительность растёт в том числе и за счёт оптимизации
библиотеки под различные модели процессоров;
можно попробовать исопльзовать оттуда не только тригонометрию но и функции работы
с изображениями 2D;

P.S. Менеджер проекта этой библиотеки из Нижнего Новгорода откуда и сам sunset :)

тестовая программка, а-ля zps:

#include <stdlib.h>
#ifdef USE_IPP
#include <ippvm.h>
#endif
#include <math.h>
#include <stdio.h>
 
#define COUNT(a) (sizeof(a)/sizeof(*(a)))
 
float a[1024];
float r1[1024];
float r2[1024];
 
int main()
{
  for(size_t i=0;i<COUNT(a);++i)
    a[i]=(drand48()-.5)*20;
 
#ifdef USE_IPP
  for(int i=0;i<800*600;++i)
    ippsSin_32f_A21(a,r1,COUNT(r1));
#else
  for(int i=0;i<800*600;++i)
    for(size_t j=0;j<COUNT(r1);++j)
      r2[j]=sinf(a[j]);
#endif
 
#if 0
  double s=0;
  for(size_t i=0;i<COUNT(r1);++i)
  {
    s+=fabs(r1[i]-r2[i]);
  }

http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:icc
http://www.intel.com/cd/software/products/asmo-na/eng/302910.htm
http://wiki.osll.ru/lib/exe/fetch.php/intel:sw5r.pdf


Last update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

http://wiki.osll.ru/ Printed on 2026/01/11 01:19

  printf("%lg\n",s);
#endif
}

default: stupid fast

stupid: main.o
  g++ main.o -o stupid
clean:
  rm -f main.o stupid
fast: ipp_main.o
  g++ -L/opt/intel/ipp/5.2/ia32/sharedlib ipp_main.o -lippcore -lippvm -o
fast

ipp_main.o: main.cpp
  g++ -I/opt/intel/ipp/5.2/ia32/include -DUSE_IPP -c main.cpp -o ipp_main.o

результаты:

$ time ./fast && time ./stupid

real    0m3.666s
user    0m3.661s
sys     0m0.002s

real    0m37.244s
user    0m37.095s
sys     0m0.046s

итого – ускорение в 10 раз. замена A21 на A11 дает

$ time ./fast && time ./stupid

real    0m2.975s
user    0m2.964s
sys     0m0.007s

real    0m36.754s
user    0m36.675s
sys     0m0.033s

Для тригонометрии в hotspot 2 использовал ippsSin.

diff -ruN src-org/Makefile src1/Makefile
--- src-org/Makefile    2007-09-17 17:43:08.000000000 +0400
+++ src1/Makefile       2007-11-02 00:49:53.000000000 +0300
@@ -56,19 +56,19 @@
 CC         = gcc
 CPLAT      =



2026/01/11 01:19 9/14 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

 CPROC      =
-CINC       = -I$(SRC_DIR)
+CINC       = -I$(SRC_DIR) -I/opt/intel/ipp/5.2/ia32/include
 CDEFS      =
 COBJ       = -c -o$(OBJ_DIR)/$@
-CDEFOPT    = -O2
+CDEFOPT    = -g -pg -fprofile-arcs -ftest-coverage
 COPT       =
-CFLAGS     =
+CFLAGS     = -O3 -ffast-math -ffinite-math-only -fno-math-errno -funsafe-
math-optimizations -fno-trapping-math -march=prescott
 CFLAGS_ALL = $(CFLAGS) $(CINC) $(CDEFS) $(CDEFOPT) $(CPROC) $(CPLAT)

 LD         = g++
 LDPLAT     =
-LDFLAGS    =
+LDFLAGS    = -g -pg -ax -fprofile-arcs -ftest-coverage -
L/opt/intel/ipp/5.2/ia32/sharedlib
 LDOUTOPT   = -o "$(OUT_DIR)/$(BENCHMARK)"
-LIBS       = -lm -lc
+LIBS       = -lm -lc -lippcore -lippvm
 LIBS_ALL   = $(LIBS)

 endif
diff -ruN src-org/sunset.cpp src1/sunset.cpp
--- src-org/sunset.cpp  2007-09-16 12:04:44.000000000 +0400
+++ src1/sunset.cpp     2007-11-02 00:34:38.000000000 +0300
@@ -45,6 +45,7 @@
 #include <omp.h>
 #endif
 #include "sunset.h"
+#include <ippvm.h>

 #define MIN(x,y)    (((x) < (y)) ? (x) : (y))
 #define MAX(x,y)    (((x) < (y)) ? (y) : (x))
@@ -747,9 +748,10 @@

                 pFlTmp = flArgSin[currentthread].aptr;

-                #pragma ivdep
-                for(t=0; t<iWaveMeshSize; t++)
-                    pFlTmp[t] = (float)sinf(pFlTmp[t]);
+                ippsSin_32f_A21(pFlTmp,pFlTmp,iWaveMeshSize);
+                //#pragma ivdep
+                //for(t=0; t<iWaveMeshSize; t++)
+                //    pFlTmp[t] = (float)tab_sinf(pFlTmp[t]);

                 /* initialize the values of derivation */
                 flDerivX = 0.0f;

Результат – 10.044/кадр, 0.7% отличий. Понижение точности до 11 бит дает 9.139/кадр, 1%



Last update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

http://wiki.osll.ru/ Printed on 2026/01/11 01:19

отличий. Однако, по-простецки с openmp оно дружить не захотело – segfault.

zps. Максимальный результат: diff -ruN src-org src-ipp

diff src-org/Makefile src-ipp/Makefile
59c59
< CINC       = -I$(SRC_DIR)
---
> CINC       = -I$(SRC_DIR) -I/opt/intel/ipp/5.2/ia32/include
62c62,63
< CDEFOPT    = -O2
---
> #CDEFOPT    = -O2
> CDEFOPT    = -g
64c65
< CFLAGS     =
---
> CFLAGS     = -O3 -ffast-math -ffinite-math-only -fno-math-errno -funsafe-
math-optimizations -fno-trapping-math -march=pentium4m
69c70
< LDFLAGS    =
---
> LDFLAGS    = -g -pg -ax -fprofile-arcs -ftest-coverage -
L/opt/intel/ipp/5.2/ia32/sharedlib
71c72
< LIBS       = -lm -lc
---
> LIBS       = -lm -lc -lippcore -lippvm -lguide -lipps -lippm
diff src-org/sunset.cpp src-ipp/sunset.cpp
48c48,51
<
---
> #include <ippvm.h>
> #include <ipps.h>
> #include <ippm.h>
> #include <iostream>
307c310,311
<                 float   OT, KX1, KY1;
---
>                 float   *OT, *KX1, *KY1;
>                 float   kx1, ky1, ot; // zps
339a344,346
>             free(OT);
>             free(KX1);
>             free(KY1);
357c364,366
<
---
>         OT           = (float*)malloc(iWaveHarmNum * sizeof(float));
>         KX1          = (float*)malloc(iWaveHarmNum * sizeof(float));



2026/01/11 01:19 11/14 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

>         KY1          = (float*)malloc(iWaveHarmNum * sizeof(float));
362a372
>
657a668,669
>     ippsMulC_32f(flOmega, flTime, OT, iWaveHarmNum);
>     float xxx[iAngleHarmNum];
663c675
<         private(currentthread, OT, KX1, KY1) \
---
>         private(currentthread, OT, KX1, KY1, kx1, ky1, ot) \
679a692
>
732c745,749
< */
---
> *///              std::cerr << "NKMAX: "<< NKMAX << std::endl;
>
>                 ippsMulC_32f(flK, flDecartX[i][j], KX1, NKMAX);
>                 ippsMulC_32f(flK, flDecartY[i][j], KY1, NKMAX);
>
735,738c752,755
<                     OT  = flOmega[t] * flTime;
<                     KX1 = flK[t] * flDecartX[i][j];
<                     KY1 = flK[t] * flDecartY[i][j];
<
---
>                     kx1 = KX1[t];
>                     ky1 = KY1[t];
>                     ot =  OT[t];
>                     int len = t * iAngleHarmNum;
741,745c758,761
<                         iSinIndex1 = t * iAngleHarmNum + l;
<                         flArgSin[currentthread].aptr[iSinIndex1] = OT -
<                             KX1 * flAzimuthCosFi[l] - KY1 *
flAzimuthSinFi[l] +
<                             flRandomPhase[t*iAngleHarmNum + l];
<                     } /* end for l */
---
>                         iSinIndex1 = len + l;
>                         flArgSin[currentthread].aptr[iSinIndex1] = ot -
>                            kx1*flAzimuthCosFi[l] - ky1*flAzimuthSinFi[l] +
flRandomPhase[iSinIndex1];
>                    } /* end for l */
747c763,776
<
---
> #if 0
>                 float * dest;
>                 for(t = 0; t < NKMAX; t++)
>                 {
>                     dest = &flArgSin[currentthread].aptr[t*iAngleHarmNum];



Last update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

http://wiki.osll.ru/ Printed on 2026/01/11 01:19

>                     kx1 = KX1[t];
>                     ky1 = KY1[t];
>                     ippmLComb_vv_32f(flAzimuthCosFi, 4,kx1,
flAzimuthSinFi, 4,ky1, xxx, 4, iAngleHarmNum);
>                     ippsSubCRev_32f(xxx,OT[t],dest, iAngleHarmNum);
>
>                 } /* end for t */
>                 dest = NULL;
> #endif
> //                ippsAdd_32f_I(flRandomPhase,
flArgSin[currentthread].aptr, iWaveMeshSize);
750,752c779,783
<                 #pragma ivdep
<                 for(t=0; t<iWaveMeshSize; t++)
<                     pFlTmp[t] = (float)sinf(pFlTmp[t]);
---
>        ippsSin_32f_A21(pFlTmp,pFlTmp,iWaveMeshSize);
>
>                 //#pragma ivdep
>                 //for(t=0; t<iWaveMeshSize; t++)
>                 //    pFlTmp[t] = (float)sinf(pFlTmp[t]);
758a790,801
> #if 0
>                 {
>                   const float *pr[]={flAmplitudeX,flAmplitudeY};
>                   float __r[2];
>
>
ippmDotProduct_vav_32f_L(pr,0,4,pFlTmp,4,__r,iWaveMeshSize,2);
>
>                   flDerivX = __r[0];
>                   flDerivY = __r[1];
>                 }
> #endif
> #if 1
767a811
> #endif
Только в src-ipp: .sunset.cpp.swp

результат:

Frame 1 of 16 ... frame time 8.534
Frame 2 of 16 ... frame time 8.508
Frame 3 of 16 ... frame time 8.167
Frame 4 of 16 ... frame time 8.538
Frame 5 of 16 ... frame time 8.467
Frame 6 of 16 ... frame time 8.302
Frame 7 of 16 ... frame time 8.565
Frame 8 of 16 ... frame time 8.425
Frame 9 of 16 ... frame time 8.549



2026/01/11 01:19 13/14 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

Frame 10 of 16 ... frame time 8.398
Frame 11 of 16 ... frame time 8.425
Frame 12 of 16 ... frame time 8.595
Frame 13 of 16 ... frame time 8.419
Frame 14 of 16 ... frame time 8.312
Frame 15 of 16 ... frame time 8.471
Frame 16 of 16 ... frame time 8.417
=================================
Timing:
        Total time is 135.098 sec., average frame time is 8.444 sec.
 
Correctness check:
        Max RGB difference is 11.
        Number of different color pixels is 3564 (0.7%).

Результаты работы на конфигурации P4(2,6)Windows:
Лучший из полученных результатов:

Frame 1 of 16 ... frame time 3.591
Frame 2 of 16 ... frame time 3.492
Frame 3 of 16 ... frame time 3.497
Frame 4 of 16 ... frame time 3.499
Frame 5 of 16 ... frame time 3.485
Frame 6 of 16 ... frame time 3.492
Frame 7 of 16 ... frame time 3.494
Frame 8 of 16 ... frame time 3.492
Frame 9 of 16 ... frame time 3.523
Frame 10 of 16 ... frame time 3.491
Frame 11 of 16 ... frame time 3.496
Frame 12 of 16 ... frame time 3.495
Frame 13 of 16 ... frame time 3.494
Frame 14 of 16 ... frame time 3.492
Frame 15 of 16 ... frame time 3.503
Frame 16 of 16 ... frame time 3.495
=================================
Timing:
        Total time is 56.036 sec., average frame time is 3.502 sec.
 
Correctness check:
        Max RGB difference is 20.
        Number of different color pixels is 5437 (1.1%).

Достигнут:

указанием ключа fast при компилляции
заменой дублирующих вычислений в циклах в очевидных местах
выносом вычисления синусов и косинусов (ipp) полярных координат

http://wiki.osll.ru/lib/exe/fetch.php/intel:result_kel.txt
http://wiki.osll.ru/lib/exe/fetch.php/intel:result_kel.txt


Last update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

http://wiki.osll.ru/ Printed on 2026/01/11 01:19

Совсем неочевидные/исследовательские шаги

Табличный синус (плавающие числа) – тупиковая ветвь.
Целочисленная реализация алгоритма расчета вектора нормали – выигрыша по скорости
нет, по точности – проигрыш. Тупиковая ветвь.
Уменьшение количества гармоник – тупиковая ветвь.

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

Last update: 2008/01/03 02:32

http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tab_sin
http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:harm_reduction
http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2

	Исследование вопроса
	План
	Hotspots
	Вклад во время
	Пути оптимизации
	Очевидные шаги
	Менее очевидные шаги
	Использование Math Kernel Library
	Использование Intel C Compiler
	Использование Integrated Performance Primitives

	Совсем неочевидные/исследовательские шаги



