
2026/01/11 19:59 1/10 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

Исследование вопроса

Текущие задачи

План

Найти hotspots1.
Сравнить их относительный вклад во время работы2.
Наметить пути оптимизации3.

Hotspots

Профилировал gcc/gcov. Для этого патчил Makefile (cd src ; patch -p1 Makefile-profiling.patch):

diff -ruN src-org/Makefile src1/Makefile
--- src-org/Makefile 2007-09-17 17:43:08.000000000 +0400
+++ src1/Makefile 2007-10-31 22:58:53.000000000 +0300
@@ -59,14 +59,14 @@
 CINC = -I$(SRC_DIR)
 CDEFS =
 COBJ = -c -o$(OBJ_DIR)/$@
-CDEFOPT = -O2
+CDEFOPT = -g -pg -fprofile-arcs -ftest-coverage
 COPT =
-CFLAGS =
+CFLAGS = -O3
 CFLAGS_ALL = $(CFLAGS) $(CINC) $(CDEFS) $(CDEFOPT) $(CPROC) $(CPLAT)

 LD = g++
 LDPLAT =
-LDFLAGS =
+LDFLAGS = -g -pg -ax -fprofile-arcs -ftest-coverage
 LDOUTOPT = -o "$(OUT_DIR)/$(BENCHMARK)"
 LIBS = -lm -lc
 LIBS_ALL = $(LIBS)

Результаты (./sunset -cfg ../input/Sample01.cfg) – основное:

 -:
729:!!
 -: 730:!!!!!!!!!!!!!!!!! Water surface modelling
!!!!!!!!!!!!!!!!!!!!!!!!
 -:
731:!!
 -: 732:*/
247782400: 733: for(t = 0; t < NKMAX; t++)

http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2_tasks
http://wiki.osll.ru/lib/exe/fetch.php/etc:common_activities:intel_students_cup:sunset.cpp.gcov-dumb.txt

Last
update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2?rev=1194126975

http://wiki.osll.ru/ Printed on 2026/01/11 19:59

 -: 734: {
240217600: 735: OT = flOmega[t] * flTime;
240217600: 736: KX1 = flK[t] * flDecartX[i][j];
240217600: 737: KY1 = flK[t] * flDecartY[i][j];
 -: 738:
7927180800: 739: for(l = 0; l < iAngleHarmNum; l++)
 -: 740: {
7686963200: 741: iSinIndex1 = t * iAngleHarmNum + l;
 -: 742:
flArgSin[currentthread].aptr[iSinIndex1] = OT -
 -: 743: KX1 * flAzimuthCosFi[l] - KY1 *
flAzimuthSinFi[l] +
7686963200: 744: flRandomPhase[t*iAngleHarmNum +
l];
 -: 745: } /* end for l */
 -: 746: } /* end for t */
 -: 747:
 7564800: 748: pFlTmp = flArgSin[currentthread].aptr;
 -: 749:
 -: 750: #pragma ivdep
7753920000: 751: for(t=0; t<iWaveMeshSize; t++)
7746355200: 752: pFlTmp[t] = (float)sinf(pFlTmp[t]);
 -: 753:
 -: 754: /* initialize the values of derivation */
 7564800: 755: flDerivX = 0.0f;
 7564800: 756: flDerivY = 0.0f;
 -: 757:
 -: 758: /* dot product to compute derivation */
7753920000: 759: for(t = 0; t < iWaveMeshSize; t++)
 -: 760: {
7746355200: 761: flDerivX += pFlTmp[t] *
flAmplitudeX[t];
7746355200: 762: flDerivY += pFlTmp[t] *
flAmplitudeY[t];
 -: 763: }
 -: 764:

Интерпретация: алгоритм проходит по всем точкам изображения (7564800 действий). Для
прообраза каждой точки избражения, находящегося на поверхности воды рассчитывается
iWaveHarmNum * iAngleHarmNum дополнительных значений (во всех примерах – 32*32 ==
1024). Это – аргументы синусов, сами синусы и скалярные произведения амплитуд на эти
синусы (7746355200 действий).

Начальное время на моей машине: 45.457/кадр

Вклад во время

закомментировал блок целиком:

2026/01/11 19:59 3/10 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

diff -ruN src-org/sunset.cpp src1/sunset.cpp
--- src-org/sunset.cpp 2007-09-16 12:04:44.000000000 +0400
+++ src1/sunset.cpp 2007-10-31 23:34:04.000000000 +0300
@@ -730,6 +730,11 @@
 !!!!!!!!!!!!!!!!! Water surface modelling !!!!!!!!!!!!!!!!!!!!!!!!
 !!
 */
+ /* initialize the values of derivation */
+ flDerivX = 0.0f;
+ flDerivY = 0.0f;
+
+#if 0
 for(t = 0; t < NKMAX; t++)
 {
 OT = flOmega[t] * flTime;
@@ -751,17 +756,13 @@
 for(t=0; t<iWaveMeshSize; t++)
 pFlTmp[t] = (float)sinf(pFlTmp[t]);

- /* initialize the values of derivation */
- flDerivX = 0.0f;
- flDerivY = 0.0f;
-
 /* dot product to compute derivation */
 for(t = 0; t < iWaveMeshSize; t++)
 {
 flDerivX += pFlTmp[t] * flAmplitudeX[t];
 flDerivY += pFlTmp[t] * flAmplitudeY[t];
 }
-
+#endif
 /* Near horizont area correction */
 flDerivX *= P2;
 flDerivY *= P2;

Время: 1.225/кадр.

Оставил только расчет аргументов. Время: 4.771/кадр.1.
Оставил только расчет скалярного произведения. Время: 2.436/кадр.2.

Результат: основное время уходит в тригонометрию, затем – в генерацию аргументов, затем –
в скалярное произведение.

Пути оптимизации

Очевидные шаги

включить openmp, заготовки которого уже есть в коде (: (ускорение пропорционально1.
количеству вычислительных ядер)

Last
update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2?rev=1194126975

http://wiki.osll.ru/ Printed on 2026/01/11 19:59

очень много математики. однако нет ни специальных значений аргументов, ни проверок2.
matherr, ничего такого. Включить на полную оптимизацию математических вызовов.
(ускорение до 35.943/кадр или ~ в 1.2 раза)

diff -ruN src-org/Makefile src/Makefile
--- src-org/Makefile 2007-09-17 17:43:08.000000000 +0400
+++ src/Makefile 2007-10-23 22:11:17.000000000 +0400
@@ -59,14 +59,14 @@
 CINC = -I$(SRC_DIR)
 CDEFS =
 COBJ = -c -o$(OBJ_DIR)/$@
-CDEFOPT = -O2
+CDEFOPT = -g -pg -fprofile-arcs -ftest-coverage
 COPT =
-CFLAGS =
+CFLAGS = -O3 -ffast-math -ffinite-math-only -fno-math-errno -funsafe-
math-optimizations -fno-trapping-math -march=prescott -fopenmp
 CFLAGS_ALL = $(CFLAGS) $(CINC) $(CDEFS) $(CDEFOPT) $(CPROC) $(CPLAT)

 LD = g++
 LDPLAT =
-LDFLAGS =
+LDFLAGS = -g -pg -ax -fprofile-arcs -ftest-coverage -fopenmp
 LDOUTOPT = -o "$(OUT_DIR)/$(BENCHMARK)"
 LIBS = -lm -lc
 LIBS_ALL = $(LIBS)

Менее очевидные шаги

Использование Math Kernel Library

Math Kernel Library(Описание)

библиотека в основном хорошо реализует матричные операции;

Для исследования Intel Kernel Math Library написал следующее:

Код “глупой” программы, которая вызывает не думая стандартный синус.

#include <stdlib.h>
#include <math.h>

int main()
{
 double X[32][32];
 double F[32][32];

 for(int i=0; i<32; ++i)

http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.google.ru/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fwww.intel.com%2Fsoftware%2Fproducts%2Fmkl%2Ftechtopics%2Fmklman52.pdf&ei=txIpR7fmGIfs0AS7oMj7Aw&usg=AFQjCNGAKhvQ7sI3I9hp7BI6QU5mxa-RUg&sig2=ywkFBVb2LBI5chtUSOhN3Q

2026/01/11 19:59 5/10 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

 for(int j=0; j<32; ++j)
 X[i][j] = rand()%1024;

 for(int x=0;x<800;++x)
 for(int y=0;y<600;++y)
 for(int i=0;i<32;++i)
 for(int j=0;j<32;++j)
 F[i][j] = sinf(X[i][j]);
 return 0;
}

Код программы, с использованием MKL: В нем применил функцию, вычисляющую синус
элементов вектора.

#include "mkl.h"
#include <stdlib.h>

int main()
{
 double X[32][32];
 double F[32][32];

 for(int i=0; i<32; ++i)
 for(int j=0; j<32; ++j)
 X[i][j] = rand()%1024;

 for(int x=0;x<800;++x)
 for(int y=0;y<600;++y)
 vdSin(32*32,(const double *)X,(double *)F);
 return 0;
}

MakeFile:

default: stupid fast

main.o: main.cpp
 g++ main.cpp -c -o main.o

stupid: main.o
 g++ main.o -o stupid
clean:
 rm -f main.o stupid
fast: imkl_main.o
 g++ -L/opt/intel/mkl/9.1.023/lib/32 imkl_main.o -lguide -lmkl_p4m -
lmkl_ia32 -lm -lirc -o fast

imkl_main.o: imkl_main.cpp
 g++ -I/opt/intel/mkl/9.1.023/include -c imkl_main.cpp -o imkl_main.o

Третьим шагом было изменение в “быстрой” программе всех double на float. и вызов функции

Last
update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2?rev=1194126975

http://wiki.osll.ru/ Printed on 2026/01/11 19:59

vsSin Результат запуска:

make && time ./stupid && time ./fast && time ./floatfast

real 0m41.288s
user 0m39.579s
sys 0m0.143s

real 0m18.878s
user 0m18.158s
sys 0m0.086s

real 0m7.799s
user 0m7.412s
sys 0m0.049s

помимо всего прочего MKL имеет реализацию одновременного вычисления синуса и косинуса в
одной функции

Очевидно, что если в “тупую” программу добавить рядом с вызовом синуса вызов косинуса, то
врямя возрастет в два раза, что и произошло при опытной проверке.

В случае же с MKL, интересней. Далее сравнительные времена выполнения двух программ с
применением MKL:

вызываются vsSin и vsCos1.
вызывается vsSinCos2.

real 0m16.126s
user 0m15.261s
sys 0m0.026s

real 0m13.289s
user 0m12.670s
sys 0m0.028s

Использование Intel C Compiler

Компилятор(Описание)

должен позволить автоматически ипользовать SIMD команды (SSE, SSE2…) для
оптимизации вычислений в основном в циклах;
возможно подскажет где что можно ещё распараллелить;

Установил icc в Fedora 7 (только компилятор). Пришлось дополнительно yum install compat-
libstdc++-33.i386

Результаты забавные:

http://www.intel.com/cd/software/products/asmo-na/eng/284132.htm
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/clin/277618.htm

2026/01/11 19:59 7/10 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

замена -O2 на -O0 в Makefile дает время 54.252/кадр.
возврат -O2 (и добавление -lirc на линковке) дает 40.606/кадр.
оптимизация под SSE3 (-axT, -limf -lsvml) дает массу сообщений о векторизованных
циклах и время 25.237/кадр.

Разбираюсь с профилированием и PGO.

Изменения в Makefile:

diff -ruN src-org/Makefile src-icc/Makefile
--- src-org/Makefile 2007-09-17 17:43:08.000000000 +0400
+++ src-icc/Makefile 2007-11-03 22:28:21.000000000 +0300
@@ -53,22 +53,23 @@

 OBJ = .o

-CC = gcc
+CC = icc
 CPLAT =
 CPROC =
 CINC = -I$(SRC_DIR)
 CDEFS =
 COBJ = -c -o$(OBJ_DIR)/$@
-CDEFOPT = -O2
+CDEFOPT = -O3 -axT
 COPT =
 CFLAGS =
 CFLAGS_ALL = $(CFLAGS) $(CINC) $(CDEFS) $(CDEFOPT) $(CPROC) $(CPLAT)

 LD = g++
-LDPLAT =
-LDFLAGS =
+LDPLAT =
+LDFLAGS = -L/opt/intel/cc/10.0.023/lib
 LDOUTOPT = -o "$(OUT_DIR)/$(BENCHMARK)"
-LIBS = -lm -lc
+LIBS = -lm -lc -lirc -limf -lsvml
+# -lompstub -lomp_db -lguide
 LIBS_ALL = $(LIBS)

 endif

Использование Integrated Performance Primitives

Intel Performance Primitives(Описание)

как заявляется производительность растёт в том числе и за счёт оптимизации
библиотеки под различные модели процессоров;
можно попробовать исопльзовать оттуда не только тригонометрию но и функции работы
с изображениями 2D;

http://www.intel.com/cd/software/products/asmo-na/eng/302910.htm
http://wiki.osll.ru/lib/exe/fetch.php/intel:sw5r.pdf

Last
update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2?rev=1194126975

http://wiki.osll.ru/ Printed on 2026/01/11 19:59

P.S. Менеджер проекта этой библиотеки из Нижнего Новгорода откуда и сам sunset :)

тестовая программка, а-ля zps:

#include <stdlib.h>
#ifdef USE_IPP
#include <ippvm.h>
#endif
#include <math.h>
#include <stdio.h>

#define COUNT(a) (sizeof(a)/sizeof(*(a)))

float a[1024];
float r1[1024];
float r2[1024];

int main()
{
 for(size_t i=0;i<COUNT(a);++i)
 a[i]=(drand48()-.5)*20;

#ifdef USE_IPP
 for(int i=0;i<800*600;++i)
 ippsSin_32f_A21(a,r1,COUNT(r1));
#else
 for(int i=0;i<800*600;++i)
 for(size_t j=0;j<COUNT(r1);++j)
 r2[j]=sinf(a[j]);
#endif

#if 0
 double s=0;
 for(size_t i=0;i<COUNT(r1);++i)
 {
 s+=fabs(r1[i]-r2[i]);
 }
 printf("%lg\n",s);
#endif
}

default: stupid fast

stupid: main.o
 g++ main.o -o stupid
clean:
 rm -f main.o stupid
fast: ipp_main.o
 g++ -L/opt/intel/ipp/5.2/ia32/sharedlib ipp_main.o -lguide -lippcore -

2026/01/11 19:59 9/10 Исследование вопроса

Open Source & Linux Lab - http://wiki.osll.ru/

lippvm -o fast

ipp_main.o: main.cpp
 g++ -I/opt/intel/ipp/5.2/ia32/include -DUSE_IPP -c main.cpp -o ipp_main.o

результаты:

$ time ./fast && time ./stupid

real 0m3.666s
user 0m3.661s
sys 0m0.002s

real 0m37.244s
user 0m37.095s
sys 0m0.046s

итого – ускорение в 10 раз. замена A21 на A11 дает

$ time ./fast && time ./stupid

real 0m2.975s
user 0m2.964s
sys 0m0.007s

real 0m36.754s
user 0m36.675s
sys 0m0.033s

Для тригонометрии в hotspot 2 использовал ippsSin.

diff -ruN src-org/Makefile src1/Makefile
--- src-org/Makefile 2007-09-17 17:43:08.000000000 +0400
+++ src1/Makefile 2007-11-02 00:49:53.000000000 +0300
@@ -56,19 +56,19 @@
 CC = gcc
 CPLAT =
 CPROC =
-CINC = -I$(SRC_DIR)
+CINC = -I$(SRC_DIR) -I/opt/intel/ipp/5.2/ia32/include
 CDEFS =
 COBJ = -c -o$(OBJ_DIR)/$@
-CDEFOPT = -O2
+CDEFOPT = -g -pg -fprofile-arcs -ftest-coverage
 COPT =
-CFLAGS =
+CFLAGS = -O3 -ffast-math -ffinite-math-only -fno-math-errno -funsafe-
math-optimizations -fno-trapping-math -march=prescott
 CFLAGS_ALL = $(CFLAGS) $(CINC) $(CDEFS) $(CDEFOPT) $(CPROC) $(CPLAT)

 LD = g++

Last
update:
2008/01/03
02:32

etc:common_activities:intel_students_cup:tour2 http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2?rev=1194126975

http://wiki.osll.ru/ Printed on 2026/01/11 19:59

 LDPLAT =
-LDFLAGS =
+LDFLAGS = -g -pg -ax -fprofile-arcs -ftest-coverage -
L/opt/intel/ipp/5.2/ia32/sharedlib
 LDOUTOPT = -o "$(OUT_DIR)/$(BENCHMARK)"
-LIBS = -lm -lc
+LIBS = -lm -lc -lippcore -lippvm -lguide
 LIBS_ALL = $(LIBS)

 endif
diff -ruN src-org/sunset.cpp src1/sunset.cpp
--- src-org/sunset.cpp 2007-09-16 12:04:44.000000000 +0400
+++ src1/sunset.cpp 2007-11-02 00:34:38.000000000 +0300
@@ -45,6 +45,7 @@
 #include <omp.h>
 #endif
 #include "sunset.h"
+#include <ippvm.h>

 #define MIN(x,y) (((x) < (y)) ? (x) : (y))
 #define MAX(x,y) (((x) < (y)) ? (y) : (x))
@@ -747,9 +748,10 @@

 pFlTmp = flArgSin[currentthread].aptr;

- #pragma ivdep
- for(t=0; t<iWaveMeshSize; t++)
- pFlTmp[t] = (float)sinf(pFlTmp[t]);
+ ippsSin_32f_A21(pFlTmp,pFlTmp,iWaveMeshSize);
+ //#pragma ivdep
+ //for(t=0; t<iWaveMeshSize; t++)
+ // pFlTmp[t] = (float)tab_sinf(pFlTmp[t]);

 /* initialize the values of derivation */
 flDerivX = 0.0f;

Результат – 10.044/кадр, 0.7% отличий. Понижение точности до 11 бит дает 9.139/кадр, 1%
отличий. Однако, по-простецки с openmp оно дружить не захотело – segfault.

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2?rev=1194126975

Last update: 2008/01/03 02:32

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:common_activities:intel_students_cup:tour2?rev=1194126975

	Исследование вопроса
	План
	Hotspots
	Вклад во время
	Пути оптимизации
	Очевидные шаги
	Менее очевидные шаги
	Использование Math Kernel Library
	Использование Intel C Compiler
	Использование Integrated Performance Primitives

