
2026/02/03 17:50 1/3 Linux memory management summary

Open Source & Linux Lab - http://wiki.osll.ru/

Linux memory management summary

Memory accounting

Charging memory to processes
total_vm

Information sources

Per-process data:

/proc/<PID>/maps – process memory map;
/proc/<PID>/smaps – detailed process memory map;
/proc/<PID>/statm – process memory usage summary;
/proc/<PID>/status – process status;
/proc/<PID>/oom_adj
/proc/<PID>/oom_score

System-wide data:

/proc/…

What all these memory types are

Memory is always mapped from some source. And after being mapped it is backed by some storage.
There are the following cases:

mapped from file and backed by this file – shared named mapping;
mapped from file and backed by swap/physical memory – private named mapping;
mapped from /dev/zero and backed by swap/physical memory – private anonymous mapping;

Clean vs dirty
Clean pages for the given process are those, which haven't been modified by that
process. They can always be restored from the mapping source.
Dirty pages are those modified by the process. They can only be restored from backing
storage.

Shared vs private
Shared mapping is synced back to the source and may always be restored from the
source. Changes become visible in all other shared mappings of the file.
Changes made to private mapping are stored in separate backing storage and are never
visible outside the process.

Named vs anonymous ???
Named mapping is backed by the file. Clean pages may be restored from this file.
Anonymous mapping is backed either by the swap space or by the physical memory.
Clean pages may be restored from /dev/zero.

Virtual vs resident ???

Last update: 2009/07/10 18:04 etc:users:jcmvbkbc:linux-mm http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247234653

http://wiki.osll.ru/ Printed on 2026/02/03 17:50

What to expect

of heap usage
of file mapping
of anonymous mapping
of stack
of child processes/threads

OOM killing

When this happens

Who gets killed

Kernel threads or Init process never get killed by this mechanism.

For other processes we count their “score” and kill one that have maximal score. Current score for the
given process may be read from /proc/<PID>/oom_score.

 * The formula used is relatively simple and documented inline in the
 * function. The main rationale is that we want to select a good task
 * to kill when we run out of memory.
 *
 * Good in this context means that:
 * 1) we lose the minimum amount of work done
 * 2) we recover a large amount of memory
 * 3) we don't kill anything innocent of eating tons of memory
 * 4) we want to kill the minimum amount of processes (one)
 * 5) we try to kill the process the user expects us to kill, this
 * algorithm has been meticulously tuned to meet the principle
 * of least surprise ... (be careful when you change it)

Process that currently executes swapoff system call is always the first candidate to be oom-killed with
score of ULONG_MAX.

In other cases process score is counted as folows:

The memory size of the process is the basis for the badness;1.
points = total_vm

Take child processes into an account. Processes which fork a lot of child processes are likely a2.
good choice. We add half the vmsize of the children if they have an own mm. This prevents
forking servers to flood the machine with an endless amount of children. In case a single child is
eating the vast majority of memory, adding only half to the parents will make the child our kill
candidate of choice;

for each child process with own address space: points += (1 + child→total_vm/2)
Take process lifetime into an account. (CPU time is in tens of seconds and run time is in3.
thousands of seconds);

2026/02/03 17:50 3/3 Linux memory management summary

Open Source & Linux Lab - http://wiki.osll.ru/

cpu_time = (user_time + system_time) / 8; (that is, consumed cpu time in user and kernel
mode, as reported by e.g. time)
run_time = (real time elapsed since process start) / 1024;
if (cpu_time > 0) points /= int_sqrt(cpu_time);
if (run_time > 0) points /= int_sqrt(int_sqrt(run_time));

Rise score for niced processes. (Niced processes are most likely less important, so double their4.
badness points);

if (task_nice > 0) points *= 2;
Lower score for superuser processes. (Superuser processes are usually more important, so we5.
make it less likely that we kill those);

if (has_capability_noaudit(p, CAP_SYS_ADMIN) || has_capability_noaudit(p,
CAP_SYS_RESOURCE)) points /= 4;

Lower score for a process that have direct hardware access. (We don't want to kill a process6.
with direct hardware access. Not only could that mess up the hardware, but usually users tend
to only have this flag set on applications they think of as important);

if (has_capability_noaudit(p, CAP_SYS_RAWIO)) points /= 4;
Finally adjust the score by oom_adj;7.

if (oom_adj > 0) points «= oom_adj; (if points == 0 before shift, points = 1)
if (oom_adj < 0) points »= -oom_adj;

How to control OOM-killer

The following parameter may be tuned in /proc on per-process basis:

/proc/<PID>/oom_adj – signed decimal number. Positive values rise process oom_score,
negative values make it lower.

The following parameters may be tuned through sysctl interface or /etc/sysctl.conf:

vm.panic_on_oom – panic in case of OOM, instead of trying to kill some processes;
vm.oom_kill_allocating_task – try first to kill task that issued request for memory that caused
OOM condition;
vm.oom_dump_tasks
vm.would_have_oomkilled

Memleak detection

Direct memleak evidences

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247234653

Last update: 2009/07/10 18:04

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247234653

	Linux memory management summary
	Memory accounting
	Information sources
	What all these memory types are
	What to expect

	OOM killing
	When this happens
	Who gets killed
	How to control OOM-killer

	Memleak detection
	Direct memleak evidences

