2026/02/03 17:43 1/4 Linux memory management summary

Linux memory management summary

Every part of process address space is some sort of mapping.

Memory accounting

e VSZ - total size of all mapped regions, regardless of what is mapped and whether it is
accessible;

* RSS - resident set size, size of real memory pages, currently mapped into the process address
space;

e PSS - proportional set size - size of resident set, where each page shared by N processes is
counted as 1/N'th part of page;

e SHARED -

e Charging memory to processes
e total_vm

Information sources

Per-process data:

e /proc/<PID>/maps - process memory map;

¢ /proc/<PID>/smaps - detailed process memory map;

e /proc/<PID>/statm - process memory usage summary;
¢ /proc/<PID>/status - process status;

e /proc/<PID>/oom_adj

e /proc/<PID>/oom_score

System-wide data:

e /proc/...

What all these memory types are

Memory is always mapped from some source. And after being mapped it is backed by some storage.
There are the following cases:

e Shared named mapping - mapped from file and backed by this file;

Private named mapping - mapped from file and backed by swap/physical memory;

Shared anonymous mapping - mapped from /dev/zero and backed by swap/physical memory;
Private anonymous mapping - mapped from /dev/zero and backed by swap/physical memory;

Clean vs dirty
o Clean pages for the given process are those, which haven't been modified by that
process. They can always be restored from the mapping source.
o Dirty pages are those modified by the process. They can only be restored from backing
storage.

Open Source & Linux Lab - http://wiki.osll.ru/

Last update: 2009/07/13 15:04 etc:users:jcmvbkbc:linux-mm http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247483058

e Shared vs private
o Shared mapping is synced back to the source and may always be restored from the
source. Changes become visible in all other shared mappings of the file.
o Changes made to private mapping are stored in separate backing storage and are never
visible outside the process.
e Named vs anonymous
o Named mapping is backed by the file. Clean pages may be restored from this file.
o Anonymous mapping is backed either by the swap space or by the physical memory.
Clean pages may be restored from /dev/zero.
e Virtual vs resident ??7?

What to expect

e of heap usage
e of file mapping
e of anonymous mapping
e of stack
e of child processes
o what's duplicated in child, what in parent?
e of threads
o tls?

OOM killing

When this happens

Who gets killed

Kernel threads or Init process never get killed by this mechanism.

For other processes we count their “score” and kill one that have maximal score. Current score for the
given process may be read from /proc/<PID>/oom_score.

The formula used is relatively simple and documented inline in the
function. The main rationale is that we want to select a good task
to kill when we run out of memory.

Good in this context means that:

1) we lose the minimum amount of work done

2) we recover a large amount of memory

3) we don't kill anything innocent of eating tons of memory

4) we want to kill the minimum amount of processes (one)

5) we try to kill the process the user expects us to kill, this
algorithm has been meticulously tuned to meet the principle
of least surprise ... (be careful when you change it)

¥ X X K X K X X X X X ¥

http://wiki.osll.ru/ Printed on 2026/02/03 17:43

2026/02/03 17:43 3/4 Linux memory management summary

Process that currently executes swapoff system call is always the first candidate to be oom-killed with
score of ULONG_MAX.

In other cases process score is counted as folows:

1

The memory size of the process is the basis for the badness;
o points = total_vm

. Take child processes into an account. Processes which fork a lot of child processes are likely a

good choice. We add half the vmsize of the children if they have an own mm. This prevents
forking servers to flood the machine with an endless amount of children. In case a single child is
eating the vast majority of memory, adding only half to the parents will make the child our kill
candidate of choice;

o for each child process with own address space: points += (1 + child-total vm/2)

. Take process lifetime into an account. (CPU time is in tens of seconds and run time is in

thousands of seconds);

o cpu_time = (user_time + system _time) / 8; (that is, consumed cpu time in user and kernel

mode, as reported by e.g. time)

o run_time = (real time elapsed since process start) / 1024;

o if (cpu_time > 0) points /= int_sqrt(cpu_time);

o if (run_time > 0) points /= int_sqrt(int_sqrt(run_time));
Rise score for niced processes. (Niced processes are most likely less important, so double their
badness points);

o if (task_nice > 0) points *= 2;

. Lower score for superuser processes. (Superuser processes are usually more important, so we

make it less likely that we kill those);
o if (has_capability_noaudit(p, CAP_SYS_ADMIN) || has_capability_noaudit(p,
CAP_SYS_RESOURCE)) points /= 4;
Lower score for a process that have direct hardware access. (We don't want to kill a process
with direct hardware access. Not only could that mess up the hardware, but usually users tend
to only have this flag set on applications they think of as important);
o if (has_capability_noaudit(p, CAP_SYS _RAWIO)) points /= 4;

. Finally adjust the score by oom_adj;

o if (oom_adj > 0) points «= oom_adj; (if points == 0 before shift, points = 1)
o if (oom_adj < 0) points »= -oom_adj;

How to control OOM-killer

The following parameter may be tuned in /proc on per-process basis:

e /proc/<PID>/oom_adj - signed decimal number. Positive values rise process oom_score,

negative values make it lower.

The following parameters may be tuned through sysctl interface or /etc/sysctl.conf:

e vm.panic_on_oom - panic in case of OOM, instead of trying to kill some processes;
e vm.oom_Kkill_allocating_task - try first to kill task that issued request for memory that caused

OOM condition;

e vm.oom_dump_tasks
e vm.would_have_oomkilled

Open Source & Linux Lab - http://wiki.osll.ru/

Last update: 2009/07/13 15:04 etc:users:jcmvbkbc:linux-mm http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247483058

Memleak detection

Direct memleak evidences

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247483058

Last update: 2009/07/13 15:04

http://wiki.osll.ru/ Printed on 2026/02/03 17:43

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247483058

	Linux memory management summary
	Memory accounting
	Information sources
	What all these memory types are
	What to expect

	OOM killing
	When this happens
	Who gets killed
	How to control OOM-killer

	Memleak detection
	Direct memleak evidences

