2026/02/03 17:40 1/7 Linux memory management summary

Linux memory management summary

Every part of process address space is some sort of mapping.

Memory accounting

ps terminology:

%mem (pmem) - ratio of the process’s resident set size to the physical memory on the
machine, expressed as a percentage;

rss (rsz) - resident set size, the non-swapped physical memory that a task has used;

size - approximate amount of swap space that would be required if the process were to dirty all
writable pages and then be swapped out;

vsz - virtual memory size of the process;

top terminology:

VIRT - virtual Image; the total amount of virtual memory used by the task. It includes all code,
data and shared libraries plus pages that have been swapped out. VIRT = SWAP + RES;

SWAP - the swapped out portion of a task’s total virtual memory image;

RES - resident size; the non-swapped physical memory a task has used. RES = CODE + DATA;
CODE - code size; the amount of physical memory devoted to executable code, also known as
the 'text resident set’ size or TRS;

DATA - Data+Stack size; the amount of physical memory devoted to other than executable
code, also known as the 'data resident set’ size or DRS;

SHR - Shared Mem size; the amount of shared memory used by a task. It simply reflects
memory that could be potentially shared with other processes;

/proc terminology:

size - total size of the mapped regions, regardless of what is mapped and whether it is
accessible; size >=rss + swap;

rss - resident set size; size of physical memory, currently mapped into the region. rss >=
shared_clean + shared_dirty + private clean + private_dirty;

pss - proportional set size; size of resident set, where each page shared by N processes is
counted as 1/N'th part of page;

shared clean - size of memory actually shared (mapped into 2+ processes) and haven't been
written to;

shared_dirty - size of memory actually shared (mapped into 2+ processes) and changed;
private_clean - size of memory mapped only to this process and haven't been written to;
private_clean - size of memory mapped only to this process and changed;

referenced - size of data that were accessed. Each physical memory page has an attribute,
which may be reset by software and asserted by CPU automatically when the page is accessed.
This is used to monitor memory usage activity & to recycle least recently used pages first;
swap - size of region data that is currently in swap file;

Open Source & Linux Lab - http://wiki.osll.ru/

Last update: 2009/07/13 18:41

etc:users:jcmvbkbc:linux-mm http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247496064

Information sources

Quotes from linux/Documentation/filesystems/proc.txt

Per-process data:

¢ /proc/<PID>/map - process memory map;

The /proc/PID/map file containing the
their access permissions.

The format is:
address

08048000-08049000
08049000-0804a000
08042000-0806b000
a7cb1000-a7cbh2000
a7¢cbh2000-a7eb2000
a’7eb2000-a7eb3000
a7eb3000-a7ed5000
a7ed5000-a8008000
a8008000-a800a000
a800a000-a800b00OO
a800b000-a800e000
a800e000-a8022000
a8022000-a8023000
a8023000-a8024000
a8024000-a8027000
a8027000-a8043000
a8043000-a8044000
a8044000-a8045000
aff35000-aff4a000
ffffe000-fffffoOO

where "address"
"perms"”
is a

= read

= write

= execute
= shared

T 0 X = 5

"offset" is the offset into the mapping,

and
"inode"
associated

with the memory region, as the case would be with BSS (uninitialized data).

perms offset

r-xp
rw-p

is the

is the inode

00000000
00001000
00000000
00000000
00000000
00000000
00000000
00000000
00133000
00135000
00000000
00000000
00013000
00014000
00000000
00000000
0001b000
0001c000
00000000
00000000

address space in the process that it occupies,

set of permissions:

= private (copy on write)

dev

03:
03:
00:
00:
00:
00:
00:
03:
03:
03:
00:
03:
03:
03:
00:
03:
03:
03:
00:
00:

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

on that device.

currently mapped memory regions and

0 indicates that

pathname

/opt/test
/opt/test
[heap]

/lib/libc.
/lib/libc.
/lib/libc.

/lib/libpthread.so0.0
/lib/libpthread.so0.0
/lib/libpthread.so0.0

/lib/1d-1linux.so0.2
/1lib/1ld-1inux.so0.2
/lib/1d-1linux.so0.2
[stack]

[vdso]

"dev" is the device (major:minor),

no inode 1is

http://wiki.osll.ru/

Printed on 2026/02/03 17:40

2026/02/03 17:40 3/7 Linux memory management summary

The "pathname" shows the name associated file for this mapping. If the

mapping
is not associated with a file:

[heap] = the heap of the program
[stack] = the stack of the main process
[vdso] = the "virtual dynamic shared object”,

the kernel system call handler

or if empty, the mapping is anonymous.

e /proc/<PID>/smaps - detailed process memory map;

08048000-080bcO00 r-xp 00000000 03:02 13130 /bin/bash
Size: 1084 kB
Rss: 892 kB
Pss: 374 kB
Shared Clean: 892 kB
Shared Dirty: 0 kB
Private Clean: 0 kB
Private Dirty: 0 kB
Referenced: 892 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB

¢ /proc/<PID>/statm - process memory usage summary;

Field Content

size total program size (pages) (same as VmSize in status)
resident size of memory portions (pages) (same as VmRSS in status)
shared number of pages that are shared (i.e. backed by a file)
trs number of pages that are 'code'’ (not including libs; broken,
includes data
segment)
lrs number of pages of library (always 0 on 2.6)
drs number of pages of data/stack (including libs; broken,
includes library
text)
dt number of dirty pages (always 0 on 2.6)

¢ /proc/<PID>/status - process status;

>cat /proc/self/status

Name: cat

State: R (running)

Tgid: 5452

Pid: 5452

PPid: 743

TracerPid: 0 (2.4)
uid: 501 501 501 501

Gid: 100 100 100 100

Open Source & Linux Lab - http://wiki.osll.ru/

Last update: 2009/07/13 18:41

etc:users:jcmvbkbc:linux-mm http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247496064

FDSize:
Groups:
VmPeak:
VmSize:
VmLck:
VmHWM :
VmRSS:
VmData:
VmStk:
VmExe:
VmLib:
VmPTE:

Threads:

SigQ:

SigPnd:
ShdPnd:
SigBlk:
SigIgn:
SigCgt:
CapInh:
CapPrm:
CapEff:
CapBnd:

256
100 14 16
5004 kB
5004 KB
0 kB
476 kB
476 kB
156 kB
88 kB
68 kB
1412 kB
20 kb
1
0/28578
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
00000000fffffeff
0000000000000000
0000000000000000
[ARRRRRRRRRRRRR AT

voluntary ctxt switches:

nonvoluntary ctxt switches:

* /proc/<PID>/oom_ad]
e /proc/<PID>/oom_score

System-wide data:

e /proc/...

What all these memory types are

Memory is always mapped from some source. And after being mapped it is backed by some storage.
There are the following cases:

e Shared named mapping - mapped from file and backed by this file;

Private named mapping - mapped from file and backed by swap/physical memory;

Shared anonymous mapping - mapped from /dev/zero and backed by swap/physical memory;
Private anonymous mapping - mapped from /dev/zero and backed by swap/physical memory;

Clean vs dirty

o Clean pages for the given process are those, which haven't been modified by that

process. They can always be restored from the mapping source.

o Dirty pages are those modified by the process. They can only be restored from backing
storage.
e Shared vs private
o Shared mapping is synced back to the source and may always be restored from the
source. Changes become visible in all other shared mappings of the file.

http://wiki.osll.ru/

Printed on 2026/02/03 17:40

2026/02/03 17:40 5/7 Linux memory management summary

o Changes made to private mapping are stored in separate backing storage and are never
visible outside the process.
e Named vs anonymous
o Named mapping is backed by the file. Clean pages may be restored from this file.
o Anonymous mapping is backed either by the swap space or by the physical memory.
Clean pages may be restored from /dev/zero.
e Resident vs all other
o Resident is what currently in physical memory;
o If not resident, it may be swapped or not backed by whatever storage at all.

What to expect

of heap usage
o private_dirty or swap size of [heap] region grows;
o size of [heap] region grows;
of file mapping
of anonymous mapping
of stack
of child processes
o what's duplicated in child, what in parent?
of threads
o tIs?

OOM killing

When this happens

Who gets killed

Kernel threads or Init process never get killed by this mechanism.

For other processes we count their “score” and kill one that have maximal score. Current score for the
given process may be read from /proc/<PID>/oom_score.

algorithm has been meticulously tuned to meet the principle
of least surprise ... (be careful when you change it)

* The formula used is relatively simple and documented inline in the
* function. The main rationale is that we want to select a good task
* to kill when we run out of memory.

*

* Good in this context means that:

* 1) we lose the minimum amount of work done

* 2) we recover a large amount of memory

* 3) we don't kill anything innocent of eating tons of memory

* 4) we want to kill the minimum amount of processes (one)

* 5) we try to kill the process the user expects us to kill, this

>k

*

Open Source & Linux Lab - http://wiki.osll.ru/

Last update: 2009/07/13 18:41 etc:users:jcmvbkbc:linux-mm http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247496064

Process that currently executes swapoff system call is always the first candidate to be oom-killed with
score of ULONG_MAX.

In other cases process score is counted as folows:

1

The memory size of the process is the basis for the badness;
o points = total_vm

. Take child processes into an account. Processes which fork a lot of child processes are likely a

good choice. We add half the vmsize of the children if they have an own mm. This prevents
forking servers to flood the machine with an endless amount of children. In case a single child is
eating the vast majority of memory, adding only half to the parents will make the child our kill
candidate of choice;

o for each child process with own address space: points += (1 + child-total vm/2)

. Take process lifetime into an account. (CPU time is in tens of seconds and run time is in

thousands of seconds);

o cpu_time = (user_time + system _time) / 8; (that is, consumed cpu time in user and kernel

mode, as reported by e.g. time)

o run_time = (real time elapsed since process start) / 1024;

o if (cpu_time > 0) points /= int_sqrt(cpu_time);

o if (run_time > 0) points /= int_sqrt(int_sqrt(run_time));
Rise score for niced processes. (Niced processes are most likely less important, so double their
badness points);

o if (task_nice > 0) points *= 2;

. Lower score for superuser processes. (Superuser processes are usually more important, so we

make it less likely that we kill those);
o if (has_capability_noaudit(p, CAP_SYS_ADMIN) || has_capability_noaudit(p,
CAP_SYS_RESOURCE)) points /= 4;
Lower score for a process that have direct hardware access. (We don't want to kill a process
with direct hardware access. Not only could that mess up the hardware, but usually users tend
to only have this flag set on applications they think of as important);
o if (has_capability_noaudit(p, CAP_SYS _RAWIO)) points /= 4;

. Finally adjust the score by oom_adj;

o if (oom_adj > 0) points «= oom_adj; (if points == 0 before shift, points = 1)
o if (oom_adj < 0) points »= -oom_adj;

How to control OOM-killer

The following parameter may be tuned in /proc on per-process basis:

e /proc/<PID>/oom_adj - signed decimal number. Positive values rise process oom_score,

negative values make it lower.

The following parameters may be tuned through sysctl interface or /etc/sysctl.conf:

e vm.panic_on_oom - panic in case of OOM, instead of trying to kill some processes;
e vm.oom_Kkill_allocating_task - try first to kill task that issued request for memory that caused

OOM condition;

e vym.oom_dump_tasks - dump memory summary, stack of the process caused oom and table of

processes to log at before oom-killing;

e vm.would_have_oomkilled

http://wiki.osll.ru/ Printed on 2026/02/03 17:40

2026/02/03 17:40 717

Linux memory management summary

Memleak detection

Direct memleak evidences

$ cat /proc/<PID>/smaps

And monitor [heap] swap+private_dirty

08143000-bfd30000 rw-p 08143000 00:00 O

Size: 3010484
Rss: 475660
Pss: 475660
Shared Clean: 0
Shared Dirty: 0
Private Clean: 0
Private Dirty: 475660
Referenced: 0
Swap: 727624

08143000-bfd30000 rw-p 08143000 00:00 0O

Size: 3010484
Rss: 0
Pss: 0
Shared Clean: 0
Shared Dirty: 0
Private Clean: 0
Private Dirty: 0
Referenced: 0
Swap: 1203284

From:

http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:

http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247496064

Last update: 2009/07/13 18:41

kB
kB
kB
kB
kB
kB
kB
kB
kB

kB
kB
kB
kB
kB
kB
kB
kB
kB

Open Source & Linux Lab - http://wiki.osll.ru/

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm?rev=1247496064

	Linux memory management summary
	Memory accounting
	Information sources
	What all these memory types are
	What to expect

	OOM killing
	When this happens
	Who gets killed
	How to control OOM-killer

	Memleak detection
	Direct memleak evidences

