
2026/02/03 10:24 1/1 Основанное на анализе кода fuzzy-планирование потоков с применением lincheck для обнаружения ошибок в
многопоточном коде

Open Source & Linux Lab - http://wiki.osll.ru/

Основанное на анализе кода fuzzy-
планирование потоков с применением
lincheck для обнаружения ошибок в
многопоточном коде

Проблема

Текущие проверки линеаризуемости алгоритмов, например с помощью lincheck, заключаются в
случайном многопоточном исполнении кода и сравнеии результатов со всеми возможными
последовательными исполнениями тех же операций. В ходе проверки даже самых простых
студенческих lock-free алгоритмов выявилась полезность следующих функций:

Останавливать потоки после / перед CAS для повышения выроятностью некорректных1.
ситуаций
Долгой остановки потока после / перед CAS с проверкой отработки остальных потоков по2.
своим задачам

Пути решения

Внедриться в JRE или байт-код и на основе понимания использования CAS явно влиять на
планирование потоков

Ближайшие задачи

Разобраться со способами внедрения через обёртку над Atomic*Reference с барьерами и1.
соответствующий ClassLoader
Разобраться с возможностью влиять на планирование потоков в JRE через2.
outline|приоритеты

Идеи на обсуждение

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:users:kel:jre_fuzzy_threads_planning?rev=1580678049

Last update: 2020/02/03 00:14

https://github.com/Kotlin/kotlinx-lincheck
http://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html#Thread%20Management
http://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html#Thread%20Management
http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:users:kel:jre_fuzzy_threads_planning?rev=1580678049

	Основанное на анализе кода fuzzy-планирование потоков с применением lincheck для обнаружения ошибок в многопоточном коде
	Проблема
	Пути решения
	Ближайшие задачи
	Идеи на обсуждение


