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Основанное на анализе кода fuzzy-
планирование потоков с применением
lincheck для обнаружения ошибок в
многопоточном коде

Проблема

Текущие проверки линеаризуемости алгоритмов, например с помощью lincheck, заключаются в
случайном многопоточном исполнении кода и сравнеии результатов со всеми возможными
последовательными исполнениями тех же операций. В ходе проверки даже самых простых
студенческих lock-free алгоритмов выявилась полезность следующих функций:

Останавливать потоки после / перед CAS для повышения выроятностью некорректных1.
ситуаций
Долгой остановки потока после / перед CAS с проверкой отработки остальных потоков по2.
своим задачам

Пути решения

Внедриться в JRE или байт-код и на основе понимания использования CAS явно влиять на
планирование потоков

Ближайшие задачи

Разобраться со способами внедрения через обёртку над Atomic*Reference с барьерами и1.
соответствующий ClassLoader
Разобраться с возможностью влиять на планирование потоков в JRE через2.
outline|приоритеты

Идеи на обсуждение
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