
2026/02/03 15:09 1/4 Модульная анатомия

Open Source & Linux Lab - http://wiki.osll.ru/

Модульная анатомия

Цель

Разобраться в структуре загружаемых модулей Linux, больше узнать об устройстве ядра.

Ресурсы

Ноутбук Acer Aspire 3680 (старенький), дистрибутив Debian, голова и интернет.

Действия

Первый пункт

Нам нужно скачать, скомпилировать исходники ядра, с которым мы будем работать.
Пользуемся возможностями Debian и получаем исходники ядра из репозитория Debian (всегда
можно воспользоваться и http://kernel.org)

sudo apt-get update
sudo apt-get install liux-doc-2.6.32 linux-manual-2.6.32 linux-source-2.6.32
cd /usr/src/
tar jxf /usr/src/linux-source-2.6.32.tar.bz2
sudo apt-get install build-essential fakeroot kernel-package
make menuconfig
sudo make-kpkg clean
sudo fakeroot make-kpkg –initrd –append-to-version=-mine kernel_image kernel_headers
sudo dpkg -i linux-image-2.6.32-mine-10.00.Custom_i386.deb
sudo dpkg -i linux-headers-2.6.32-mine-10.00Custom_i386.deb
sudo update-initramfs -c -k 2.6.32-mine
sudo shutdown -r now

Дальше, если ядро сконфигурированно нормально, то загружаемся и вроде все, кстати update-
iniramfs нужен только, если initrd.img-2.6.32-mine не создался на лету, когда устанавливался
пакет

*1 советую обновить gcc (если пользуетесь stable, то обновлять с testing, в противном случае
ядро не соберется, так как не будет нужных заголовочных файлов), вообще стоит
использовать новые версии всех требуемых пакетов

*2 возможно придется доставить некоторые другие пакеты (см /usr/share/doc/kernel-
package/Kernel.htm)

http://kernel.org

Last update: 2016/08/08 20:53 etc:users:kernel http://wiki.osll.ru/doku.php/etc:users:kernel

http://wiki.osll.ru/ Printed on 2026/02/03 15:09

*3 ядро можно собрать и не “в стиле Debian”, а обычным образом - нет никакой разницы

*4 в даной версии ядра пришлось поправить файл /usr/src/linux-
source-2.6.32/Documentation/lguest/lguest.c, в нем нужно было убрать строку #include
<sys/eventfd.h> (21 строка), в противном случае оно просто отказывалось компилироваться,
хотя я не понял почему (потомучто такое же ядро на другом компьютере собралось без
проблем), но погуглив нашел, что такая проблема не только у меня, и что такое решение
используют и другие, после такого решения мы получаем при компиляции implicit декларацию
функции, короче если в этом месте будет ошибка, то когда она вылезет непонятно

Второй пункт

Проверим, что все работает, для этого напишем какой-нибудь бесполезный модуль,
скомпилируем его и посмотрим, что получится

 1 //hello-1.c
 2 #include <linux/module.h>
 3 #include <linux/kernel.h>
 4
 5 int init_module(void) {
 6 printk(KERN_INFO "Hellow world\n");
 7 return 0;
 8 }
 9
 10 void cleanup_module(void) {
 11 printk(KERN_INFO "Godbye world\n");
 12 }

Теперь Makefile

 1 obj-m += hello-1.c
 2 all:
 3 make -C /usr/src/linux-source-2.6.32 M=$(shell pwd) modules
 4 clean:
 5 make -C /usr/src/linux-source-2.6.32 M=$(shell pwd) clean

Теперь из каталога, в котором лежит исходник и Makefile делаем

sudo make

Должны получить примерно следующее:

 1 make -C /usr/src/linux-source-2.6.32
M=/home/mirovingen/Interested/kernel_programming/src/Hellow_World modules
 2 make[1]: Entering directory `/usr/src/linux-source-2.6.32'
 3 CC [M]
/home/mirovingen/Interested/kernel_programming/src/Hellow_World/hello-1.o
 4 Building modules, stage 2.
 5 MODPOST 1 modules

2026/02/03 15:09 3/4 Модульная анатомия

Open Source & Linux Lab - http://wiki.osll.ru/

 6 CC
/home/mirovingen/Interested/kernel_programming/src/Hellow_World/hello-1.mod.
o
 7 LD [M]
/home/mirovingen/Interested/kernel_programming/src/Hellow_World/hello-1.ko
 8 make[1]: Leaving directory `/usr/src/linux-source-2.6.32'

Если все получилось, у нас в каталоге должен появиться файл hello-1.ko, далее загружаем и
выгружаем модуль:

 1 sudo insmod hello-1.ko
 2 sudo rmmod hello-1.ko
 3 sudo cat /var/log/messages | grep -i -e "world"

Должны получить примерно следующее:

 1 Jan 28 22:32:25 debian kernel: [6196.992494] Hellow world
 2 Jan 28 22:40:17 debian kernel: [6669.012286] Goodbye world

Теперь разбираемся, что мы сделали и что получили.

Исходный текст

#include <linux/module.h> - как написано, этот заголовочный файл должен быть у всех
модулей, в нем есть объявления init_module и cleanup_module, еще куча структур описывающих
состояние, версию и другую информацию о модулях. #include <linux/kernel.h> - тут тоже есть
много чего полезного, например максимальное и минимальное значение определенного типа,
printk объявлена в этом заголовочном файле, KERN_INFO также объявлена здесь:

#define KERN_INFO “<6>” /* informational - она объявлена как строка, получается мы вызываем
printk(“<6>” “text”); это тоже самое, что и printk(“<6>text”); ??? раньше не встречал такого
варианта использования.

int init_module(void) - вызывается, когда мы загружаем модуль (insmod); void
cleanup_module(void) - вызывается, когда код выгружается (rmmod); В данном случае мы не
вольны выбирать имена функций входа и выхода, но если подключить заголовочный файл
linux/init.h, то можно присваивать произвольное имя функциям входа и выхода (дальше будет
пример)

printk - выводит значения, но она работает не совсем так как printf, как я понял, она выводит
сообщение в какую-то очередь сообщений ядра, которую просмотреть скажем в xterm нельзя,
поэтому для просмотра вывода мы заглядываем в файл /var/log/messages, который, кстати,
довольно большой, и, наверно, очень полезный.

Прошу знатоков еще пояснить вот такой момент:

код возврата определяется программистом, т. е. он может не совпадать с какими-то
принятыми в ОС значениями, для прикладных программ в этом нет ничего смертельного, но в
данном случаем мы ведь не свободны в выборе кода возврата, так как потом система
использует его значение? если да то какие еще коды существуют, и что они обозначают?

Last update: 2016/08/08 20:53 etc:users:kernel http://wiki.osll.ru/doku.php/etc:users:kernel

http://wiki.osll.ru/ Printed on 2026/02/03 15:09

Makefile

Как написано формально Makefile должен содержать только строку obj-m += hello-1.o, но тогда
простой командой make мы получим только ошибку, правильным вариантом вызова будет:

 make -C /usr/src/linux-source-2.6.32 M=$(shell pwd) modules

$(shell pwd) - текущий каталог, можно прописать и руками.

/usr/src/linux-source-2.6.32 - каталог с исходниками ядра.

modules - не знаю зачем нужно, предполагаю, что эта команда показывает, что мы собираем
именно модули ядра.

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/etc:users:kernel

Last update: 2016/08/08 20:53

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/etc:users:kernel

	Модульная анатомия
	Цель
	Ресурсы
	Действия
	Первый пункт
	Второй пункт
	Исходный текст
	Makefile

