2026/02/03 01:24 1/2 Bounded object pool

Bounded object pool

[loBOSIbHO YacTo B lock-free anropnTmax Bo3HMKaeT HEOOXO0AMMOCTb B Nye HEKOTOPOro
thukcnposaHHoOro obbema. Pas anroputm lock-free, To 1 nyn Toxe fomkeH 6bITb NO KpaHeEN Mepe
lock-free. Myn — 3T0 He oYepelib U He CTeK, XOTHA 3TN CTPYKTYPbI AaHHbLIX MOrYT ObITb NynoMm. Myn —
3TO KJlacC € ABYMSA NHTepdencHoiMn pyHKUnaMU: - T * get () - Bo3BpawaeT obon 0bbekT 13 nyna
nam nullptr, ecam nyn nyct - bool put(T *) - nomewaeT 0bbeKT B Nyn, Bo3BpawaeT true,
ecnn ycnewHo (nyn He nepenonHeH) nan false, ecan nyn NnonoH.

Kak npaBuio, KOHCTPYKTOP MyJia 3aMoHSET ero HeknMn obbekTamun, B 3Tom cyllecTBeEHHoe
OT/INYME OT KNAaCCMYECKOWN o4epeamn Uan cTeka, KoTopble co3aatoTca nycThiMu. A BoobLue,
HOPMaJibHOE COCTOSIHME MyJla — «MYyJI NMOJIOH», TOra Kak A8 04epeamn - «o4epeb nycTar.

Myn NnpuMeHseTCcs A1 XPaHEHUSA HEKOTOPbLIX MPeassioLMpoBaHHbLIX PECYPCOB (BCMOMOraTeNbHbIX
06BEKTOB), KOTOpbIE pa3fenalTCca Mexay NoTokaMu. HanpuMep, MOHUTOP CUHXPOHU3aLUN MOXET
nMeTb Nyn mutex'os, KOTOpbIE NCMONL3YIOTCS B peanm3auum lock-based fine-grained gepesa. 3Tn
mutex'bl UICNONb3YIOTCA A1 CUHXPOHU3aLMM OCTYNa K BEPLUMHAM AepeBa Npu BCTaBKe/yLaneHuu.
Yucno y3nos fepesBa MOXeET ObITb OFPOMHO, CO34aBaThb A1 KaXKA0ro y3aa cBon mutex
HepaunoHanbHO (He 3abynem, 4To mutex - CUCTEMHBIN pPecypc, YNCI0 KOTOPOro MOXeT BbiThb
OrpaHMYeHo), Toraa Kak 41mcio 0gHOBpeMeHHO paboTalowmx ¢ LepeBOM NOTOKOB HEBEJINKO, TO eCTb
B KaXKbll MOMEHT BpeMEeHU HaM HY>XHO He 1 MaH mutex'os, a 10 — 20. 3gecb MOXeT ObIThb
MCNonb3oBaH Ny mutex'os: Mbl bepem 13 nyna mutex, NpuKpennsem ero K y3ny aepesa, 104UM,
Lenaem moaudukKauuio nogaepesa, pa3noynm 1 Bo3spallaeMm mutex B nyn.

B HacToswwee BpeMs (libcds 2.1.0) B kKavecTBe nysa B 6ubnnoTeke ncnonb3yeTtcs aaroputm bounded
ovyepeaun OAmMuTpusa BotokoBa. OH ObICTP, HO UMEET OAUH CYLLECTBEHHbIN HEAOCTAaTOK — MHOMAa He
obecneymBaeT aTOMapHOCTU: NPW MNOYTU NOJIHON o4epeamn push () MOXXeT b6biTb HeyAa4YHbIM, XOTS
MeCTO B o4yepean ewé eCcTb. TO eCTb 3Ta 04epelb He MOXET CTabuibHO paboTaTh B peXxume «ny
MOJIOH».

TpebyeTcsa: peannsoBaTb 6bICTpbIN anropuTtm lock-free/wait-free bounded pool:

template <typename T>
class Pool
{
size t capacity ;
public:
Pool(size t capacity): capacity (capacity) {}
T * get(); // return nullptr if pool is empty
bool put(T * obj); // return false if pool is full

bool empty() const;
bool full() const;
size t capacity() const { return capacity ; }

};

Kputepuin KOppPeKTHOCTU: peasiv3aumna 40/HKHA YCNELWHO NMPONTY TakKoN TECT Ha YCMELHYH0
paboTy B COCTOAHUM «NYN MNOYTM MNONOH» (NCEBAOKOA):

Pool<void *> pool(256);

Open Source & Linux Lab - http://wiki.osll.ru/

http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue
https://en.wikipedia.org/wiki/Linearizability

Last update: 2015/12/10 15:09

std::
std::

void

{

void

atomic<size t> nGetError(0);
atomic<size t> nPutError(0);

thread()

for (int i = 1; i <= 1000000; ++i) {
if ('pool.push(i))
nPutError.fetch add(1l, std::memory order relaxed);
void * p = pool.pop();
if (p == nullptr)
nGetError.fetch add(1, std::memory order relaxed);

main()

size t const thread count = 16;

size t const initial size = pool.capacity() - thread count;
// initialize pool
for (size t i = 1; 1 <= initial size; ++i)

pool.put(&initial size /* put anything */);

// run working threads

for (int i = 0; I < thread count; ++i)
run_thread(thread func);

wait for _all threads done();

// no put/get error
assert(nPutError.load() == 0);
assert(nGetError.load() == 0);

From:

http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http:

/Iwiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449749347 {

Last update: 2015/12/10 15:09

http://wiki.osll.ru/

projects:libcds:bounded_pool http://wiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449749347

Printed on 2026/02/03 01:24

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449749347

	Bounded object pool

