2026/02/02 23:32 1/2 Bounded object pool

Bounded object pool

[loBOSIbHO YacTo B lock-free anropnTmax Bo3HMKaeT HEOOXO0AMMOCTb B Nye HEKOTOPOro
thukcnposaHHoOro obbema. Pas anroputm lock-free, To 1 nyn Toxe fomkeH 6bITb NO KpaHeEN Mepe
lock-free. Myn — 3T0 He oYepelib U He CTeK, XOTHA 3TN CTPYKTYPbI AaHHbLIX MOrYT ObITb NynoMm. Myn —
3TO KJ1acC C ABYMSA UHTeP(EenCcHbIMN QYHKLNAMK:

e T * get() - Bo3BpawaeT nobon 06beKT 13 nyna uam nullptr, ecam nyn nycr
e bool put(T *) -nomewaeT 06bekT B Nys, BO3BpaLLaeT true, ecam ycnewHo (nyn He
nepenonHeH) nnn false, ecan nyn NonoH.

Kak npaBuio, KOHCTPYKTOP My/a 3anojHAeT ero Hekumu obbekTammn. B 3ToM cylecTBeHHOe
OT/INYME OT KNAaCCMYECKOW o4epeamn Uan CTeka, KOTopble co3aatoTca nycToiMu. A BoobLue,
HOPMaJibHOE COCTOSIHME MyNla — «MyJ MOMOH», TOrAa KakK /i O4epenn - «ovepelb nycra.

Myn npumMeHsaeTca oNna XpaHeHUS HEKOTOPbLIX NpeannouMpoBaHHbIX PeCypCcoB (BCMOMOraTesibHbIX
00bEKTOB), KOTOPLIE Pa3AeNanTCa Mexay NoTokamMmu. Hanpumep, MOHUTOP CUHXPOHU3ALMM MOXET
nMeTb Nyn mutex'os, KOTOpbIE NCNOMb3YIOTCSA B peanun3aummn lock-based fine-grained gepesa. 3mn
mutex'bl NCNONb3YTCA ONA CUHXPOHM3aLMM AOCTYNa K BEPLUMHAM AepeBa Npu BCTaBKe/yaaneHuu.
Yuncno y3nos gepeBa MOXeT BbITb OFPOMHO, CO3A4aBaTh A5 KaXXA0ro y3/a CBOM mutex
HepauunoHanbHO (He 3abyaeM, 4To mutex - CUCTEMHbIA PECYPC, YNCSI0O KOTOPOro MOXET ObIThb
OFPaHUY€eHO0), TOrAa Kak Yncao ogHOBpPEMEHHO paboTaloLlwmx C 4epeBOM NOTOKOB HEBEMKO, TO €CTb
B KaXXAbll MOMEHT BPEMEHUN HaM HY>XHO He 1 MiH mutex'os, a 10 — 20. 3gecb MOXXeT BbITb
MCNosb30BaH Nya mutex'os: Mbl 6epeM 13 nyna mutex, NPUKPENSeM ero K y3ny AepeBa, 104MM,
fenaem Mmoaudukaunio nogaepesa, pasfioynm 1 Bo3spaliaeM mutex B ny.

B HacToswee Bpems (libcds 2.1.0) B kavyecTBe nyna B bubnnoteke ncnonbsyetcs anroputm bounded
ovepenn Omutpus BotokoBa. OH BbICTP, HO UMEET OAMH CYLLEeCTBEHHbI He0CTaTOK — MHOr4a He
obecneynBaeT aTOMapHOCTW: NPU NOYTK NONHOW ovepeamn push () MoxeT BbiTb HeyAaYHbIM, XOTS
MeCTO B 04epenu eLé eCcTb. TO eCTb 3Ta 04epellb He MOXXET cTabunbHO paboTaTh B pexxmMme «mnyn
MOMOH».

TpebyeTca: peannsosaTtb bbicTpbin anroputm lock-free/wait-free bounded pool:

template <typename T>
class Pool
{
size t capacity ;
public:
Pool(size t capacity): capacity (capacity) {}
T * get(); // return nullptr if pool is empty
bool put(T * obj); // return false if pool is full

bool empty() const;
bool full() const;
size t capacity() const { return capacity ; }

};

KpuTepuit KOPPEKTHOCTU: PEaNN3aLIMs J0/KHA YCMELWHO NPONTN TakoW TECT Ha yCreLHYo
PaboTy B COCTOSHUM «MYJ MOYTY NMOSOH» (NCeBAOKOA):

Open Source & Linux Lab - http://wiki.osll.ru/

http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue
https://en.wikipedia.org/wiki/Linearizability

Last update: 2015/12/10 15:09 projects:libcds:bounded_pool http://wiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449749392

Pool<void *> pool(256);
std::atomic<size t> nGetError(0);
std::atomic<size t> nPutError(0);

void thread()
{
for (int i = 1; i <= 1000000; ++i) {
if (!'pool.push(i))
nPutError.fetch add(1l, std::memory order relaxed);
void * p = pool.pop();
if (p == nullptr)
nGetError.fetch add(1, std::memory order relaxed);

void main()

size t const thread count = 16;

size t const initial size = pool.capacity() - thread count;
// initialize pool
for (size t i = 1; 1 <= initial size; ++i)

pool.put(&initial size /* put anything */);

// run working threads

for (int i = 0; I < thread count; ++i)
run_thread(thread func);

wait for all threads done();

// no put/get error
assert(nPutError.load() == 0);
assert(nGetError.load() == 0);

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449749392 4~

Last update: 2015/12/10 15:09

http://wiki.osll.ru/ Printed on 2026/02/02 23:32

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449749392

	Bounded object pool

