
2026/02/03 01:24 1/2 Bounded object pool

Open Source & Linux Lab - http://wiki.osll.ru/

Bounded object pool

Довольно часто в lock-free алгоритмах возникает необходимость в пуле некоторого
фиксированного объема. Раз алгоритм lock-free, то и пул тоже должен быть по крайней мере
lock-free. Пул — это не очередь и не стек, хотя эти структуры данных могут быть пулом. Пул —
это класс с двумя интерфейсными функциями:

T * get() - возвращает любой объект из пула или nullptr, если пул пуст
bool put(T *) - помещает объект в пул, возвращает true, если успешно (пул не
переполнен) или false, если пул полон.

Как правило, конструктор пула заполняет его некими объектами. В этом существенное
отличие от классической очереди или стека, которые создаются пустыми. И вообще,
нормальное состояние пула — «пул полон», тогда как для очереди - «очередь пуста».

Пул применяется для хранения некоторых преаллоцированных ресурсов (вспомогательных
объектов), которые разделяются между потоками. Например, монитор синхронизации может
иметь пул mutex'ов, которые используются в реализации lock-based fine-grained дерева. Эти
mutex'ы используются для синхронизации доступа к вершинам дерева при вставке/удалении.
Число узлов дерева может быть огромно, создавать для каждого узла свой mutex
нерационально (не забудем, что mutex – системный ресурс, число которого может быть
ограничено), тогда как число одновременно работающих с деревом потоков невелико, то есть
в каждый момент времени нам нужно не 1 млн mutex'ов, а 10 — 20. Здесь может быть
использован пул mutex'ов: мы берем из пула mutex, прикрепляем его к узлу дерева, лочим,
делаем модификацию поддерева, разлочим и возвращаем mutex в пул.

В настоящее время (libcds 2.1.0) в качестве пула в библиотеке используется алгоритм bounded
очереди Дмитрия Вьюкова. Он быстр, но имеет один существенный недостаток — иногда не
обеспечивает атомарности: при почти полной очереди push() может быть неудачным, хотя
место в очереди ещё есть. То есть эта очередь не может стабильно работать в режиме «пул
полон».

Требуется: найти/придумать и реализовать быстрый алгоритм lock-free/wait-free bounded pool:

template <typename T>
class Pool
{
 size_t capacity_;
public:
 Pool(size_t capacity): capacity_(capacity) {}
 T * get(); // return nullptr if pool is empty
 bool put(T * obj); // return false if pool is full

 bool empty() const;
 bool full() const;
 size_t capacity() const { return capacity_; }
};

Критерий корректности: реализация должна успешно пройти такой тест на успешную
работу в состоянии «пул почти полон» (псевдокод):

http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue
https://en.wikipedia.org/wiki/Linearizability

Last update: 2015/12/10 15:33 projects:libcds:bounded_pool http://wiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449750839

http://wiki.osll.ru/ Printed on 2026/02/03 01:24

Pool<void *> pool(256);
std::atomic<size_t> nGetError(0);
std::atomic<size_t> nPutError(0);

void thread_func()
{
 for (int i = 1; i <= 1000000; ++i) {
 if (!pool.put(&i))
 nPutError.fetch_add(1, std::memory_order_relaxed);
 void * p = pool.get();
 if (p == nullptr)
 nGetError.fetch_add(1, std::memory_order_relaxed);
 }
}

void main()
{
 size_t const thread_count = 16;

 size_t const initial_size = pool.capacity() - thread_count;

 // initialize pool
 for (size_t i = 1; i <= initial_size; ++i)
 pool.put(&initial_size /* put anything */);

 // run working threads
 for (int i = 0; I < thread_count; ++i)
 run_thread(thread_func);
 wait_for_all_threads_done();

 // no put/get error
 assert(nPutError.load() == 0);
 assert(nGetError.load() == 0);
}

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449750839

Last update: 2015/12/10 15:33

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/projects:libcds:bounded_pool?rev=1449750839

	Bounded object pool

