
2026/02/03 01:23 1/2 Рефакторинг SMR-алгоритма cds::gc::DHP

Open Source & Linux Lab - http://wiki.osll.ru/

Рефакторинг SMR-алгоритма cds::gc::DHP

DHP – это вариант алгоритма Hazard Pointer с неограниченным числом hazard pointer'ов для
потока. Текущая реализация (libcds 2.1.0) предполагает, что массив retired data (данных,
готовых для удаления) один для всех потоков, то есть все потоки добавляют в него данные и
по достижении некоторого предела вызывается основная процедура алгоритма HP – scan(),
которая проходит по массиву retired ptr и физически удаляет те данные, которые не объявлены
как hazard pointer. Очевидно, что scan() не должна приостанавливать работу всех остальных
потоков; с другой стороны, пока scan() работает, массив retired ptr недоступен для
изменений, то есть потоки не должны в него добавлять данные.

Эта коллизия разрешается в libcds 2.1.0 следующим образом: имеется циклический список
массивов retired ptr, один из которых является текущим. По заполнении текущего массива
вызывается scan(), которая приватизирует текущий массив retired ptr и объявляет текущим
следующий массив из списка. Таким образом, пока scan() работает с одним массивом retired
ptr, остальные потоки добавляют retired data в другой массив, текущий. Размер циклического
списка задается в конструкторе объекта DHP.

Такой алгоритм чреват ABA-проблемой, когда у нас число потоков много больше размера
циклического списка.

Варианты решения: 1. Объявить массив retired ptr приватным (thread local data) для каждого
потока, работающего с DHP-based структурами данных. При этом надо учитывать:

размер массива retired data должен изменяться динамически (он зависит от числа hazard
ptr на момент вызова scan(); критерий увеличения размера: scan() не смогла удалить
ни одного указателя из retired data).
нагрузка на структуру данных может быть неравномерна: одни потоки — deleter thread –
только удаляют данные из DHP-based структуры данных, то есть активно работают с
retired ptr array, другие потоки — updater thread – в основном добавляют/ ищут в
структуре. Поэтому retired ptr array каждого потока должен иметь некий timestamp
последнего применения scan() и последующий вызов scan() должен происходить не
только по заполнении retired ptr array, но и по превышению этого timestamp на
некоторую дельту.

Это решение плохо тем, что память используется нерационально: потоки, мало удаляющие из
структуры данных, будут долго заполнять свой retired array, редко вызывать scan().

2. Retired array - один для всех потоков. Когда один из потоков при вызове retire_ptr()
обнаруживает, что retired array полон, он приватизирует retired array и вызывает scan(). При
этом поток должен создать новый retired array, чтобы остальные потоки могли продолжить
свою работу. Размер retired array в принципе не ограничен. Если scan() обнаруживает, что
может удалить (delete), например, не более половины элементов из текущего retired array, она
должна увеличить размер массива, то есть увеличить порог срабатывания следующего вызова
scan(). Получается, что, ради эффективности, “массив” retired array должен быть не
массивом, а списком блоков. Блоки берутся из некоторого пула блоков, конечно, в lock-free
манере. Следовательно, нужно решить ABA-проблему для этого пула.

Попутно следует упростить реализацию DHP, сократив иерархию структур.



Last update: 2015/12/17 12:59 projects:libcds:dhp_refactor http://wiki.osll.ru/doku.php/projects:libcds:dhp_refactor?rev=1450346344

http://wiki.osll.ru/ Printed on 2026/02/03 01:23

Требование: API (public interface and nested classes) DHP-алгоритма измениться не должно.

From:
http://wiki.osll.ru/ - Open Source & Linux Lab

Permanent link:
http://wiki.osll.ru/doku.php/projects:libcds:dhp_refactor?rev=1450346344

Last update: 2015/12/17 12:59

http://wiki.osll.ru/
http://wiki.osll.ru/doku.php/projects:libcds:dhp_refactor?rev=1450346344

	Рефакторинг SMR-алгоритма cds::gc::DHP

