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Abstract

This paper descibes version 2.0 of jerasure, a library in C++ that supports erasure coding in storage

applications. In this paper, we describe both the techniques and algorithms, plus the interface to the

code. Thus, this serves as a quasi-tutorial and a programmer’s guide.

Version 2.0 of jerasure is written in C++, uses a new object-oriented interface, adds generalized

EVENODD and generalized RDP to the library, supports multi-threaded coding, and includes two new

example applications.

If You Use This Library or Document

Please send me an email to let me know how it goes. One of the ways in which I am evaluated both internally
and externally is by the impact of my work, and if you have found this library and/or this document useful,
I would like to be able to document it. Please send mail to plank@eecs.utk.edu.

The library itself is protected by the GNU LGPL. It is free to use and modify within the bounds of the
LGPL. None of the techniques implemented in this library have been patented.

Finding the Code

Please see http://www.cs.utk.edu/~plank/plank/papers/CS-08-627.html to get the TAR file for this
code.

∗plank@cs.utk.edu or plank@eecs.utk.edu, 865-974-4397, This material is based upon work supported by the National

Science Foundation under grant CNS-0615221.
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1 Introduction

Erasure coding for storage applications is growing in importance as storage systems grow in size and complex-
ity. This paper describes jerasure, a library in C++ that supports erasure coding applications. Jerasure
has been designed to be modular, fast and flexible. It is our hope that storage designers and programmers
will find jerasure to be a convenient tool to add fault tolerance to their storage systems.

Jerasure supports a horizontal mode of erasure codes. We assume that we have k devices that hold data.
To that, we will add m devices whose contents will be calculated from the original k devices. If the erasure
code is a Maximum Distance Separable (MDS) code, then the entire system will be able to tolerate the loss
of any m devices.

(a) Encoding. (b) Decoding.

Figure 1: The act of encoding takes the contents of k data devices and encodes them on m coding devices.
The act of decoding takes some subset of the collection of (k + m) total devices and from them recalcalates
the original k devices of data.

As depicted in Figure 1, the act of encoding takes the original k data devices, and from them calculates m
coding devices. The act of decoding takes the collection of (k + m) devices with erasures, and from the
surviving devices recalculates the contents of the original k data devices.

Most codes have a third parameter w, which is the word size. The description of a code views each device
as having w bits worth of data. The data devices are denoted D0 through Dk−1 and the coding devices are
denoted C0 through Cm−1. Each device Di or Cj holds w bits, denoted di,0, . . . di,w−1 and ci,0, . . . ci,w−1. In
reality of course, devices hold megabytes of data. To map the description of a code to its realization in a
real system, we do one of two things:

1. When w ∈ {8, 16, 32}, we can consider each collection of w bits to be a byte, short word or word
respectively. Consider the case when w = 8. We may view each device to hold B bytes. The first
byte of each coding device will be encoded with the first byte of each data device. The second byte of
each coding device will be encoded with the second byte of each data device. And so on. This is how
Standard Reed-Solomon coding works, and it should be clear how it works when w = 16 or w = 32.

2. Most other codes work by defining each coding bit ci,j to be the bitwise exclusive-or (XOR) of some
subset of the other bits. To implement these codes in a real system, we assume that the device is
composed of w packets of equal size. Now each packet is calculated to be the bitwise exclusive-or of
some subset of the other packets. In this way, we can take advantage of the fact that we can perform
XOR operations on whole computer words rather than on bits.

The process is illustrated in Figure 2. In this figure, we assume that k = 4, m = 2 and w = 4. Suppose
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that a code is defined such that coding bit c1,0 is goverened by the equation:

c1,0 = d0,0 ⊕ d1,1 ⊕ d2,2 ⊕ d3,3,

where ⊕ is the XOR operation. Figure 2 shows how the coding packet corresponding to c1,0 is calculated
from the data packets corresponding to d0,0, d1,1, d2,2 and d3,3. We call the size of each packet the
packet size, and the size of w packets to be the coding block size. The packetsize must be a multiple of
8 so obviously, the coding block size will be a multiple of w ∗ packetsize.

Figure 2: Although codes are described on systems of w bits, their implementation employs packets that
are much larger. Each packet in the implementation corresponds to a bit of the description. This figure is
showing how the equation c1,0 = d0,0 ⊕ d1,1 ⊕ d2,2 ⊕ d3,3 is realized in an implementation.

2 The Modules of the Library

This library is broken into four modules, each with its own header file and implementation in C++. Typically,
when using a code, one only needs three of these modules: galois, jerasure and one of the others. The
modules are:

1. galois.h/galois.cpp: These are procedures for Galois Field Arithmetic as described and implemented
in [Pla07].

2. jerasure.h/jer slices.cpp, jer gen t.cpp, jer matrix.cpp: These are kernel routines that are com-
mon to most erasure codes. They do not depend on any module other than galois. They include
support for matrix-based coding and decoding, bit-matrix-based coding and decoding, conversion of
bit-matrices to schedules, matrix and bit-matrix inversion.

3. reedsol.h/reedsol.cpp: These are procedures for creating distribution matrices for Reed-Solomon
coding [RS60, Pla97, PD05], including Cauchy Reed-Solomon coding [BKK+95, PX06]. They also
include the optimized version of Reed-Solomon encoding for RAID-6 as discussed in [Anv07].

4. bitmatrices.h/bitmatrices.cpp: These are procedures for performing encoding and decoding with
generalized EVENODD [BBV], generalized RDP, and minimal density MDS codes – the RAID-6
Liberation codes [Pla08b], Blaum-Roth codes [BR99] and the RAID-6 Liber8tion code [Pla08a].

Each module is described in its own section below. Additionally, there are example programs that show
the usage of each module.
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3 Matrix-Based Coding In General

The mechanics of matrix-based coding are explained in great detail in [Pla97]. We give a high-level overview
here.

Authors’ Caveat: We are using old nomenclature of “distribution matrices.” In standard
coding theory, the “distribution matrix” is the transpose of the Generator matrix. In the next
revision of jerasure, we will update the nomenclature to be more consistent with classic coding
theory.

Suppose we have k data words and m coding words, each composed of w bits. We can describe the state
of a matrix-based coding system by a matrix-vector product as depicted in Figure 3. The matrix is called
a distribution matrix and is a (k + m) × k matrix. The elements of the matrix are numbers in GF (2w) for
some value of w. This means that they are integers between 0 and 2w −1, and arithmetic is performed using
Galois Field arithmetic: addition is equal to XOR, and multiplication is implemented in a variety of ways.
The Galois Field arithmetic library in [Pla07] has procedures which implement Galois Field arithmetic.

Figure 3: Using a matrix-vector product to describe a coding system.

The top k rows of the distribution matrix compsose a k × k identity matrix. The remaining m rows
are called the coding matrix, and are defined in a variety of ways [Rab89, Pre89, BKK+95, PD05]. The
distribution matrix is multiplied by a vector that contains the data words and yields a product vector
containing both the data and the coding words. Therefore, to encode, we need to perform m dot products
of the coding matrix with the data.

To decode, we note that each word in the system has a corresponding row of the distribution matrix.
When devices fail, we create a decoding matrix from k rows of the distribution that correspond to non-failed
devices. Note that this matrix multiplied by the original data equals the k survivors whose rows we selected.
If we invert this matrix and multiply it by both sides of the equation, then we are given a decoding equation
– the inverted matrix multiplied by the survivors equals the original data.
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4 Bit-Matrix Coding In General

Bit-matrix coding is first described in the original Cauchy Reed-Solomon coding paper [BKK+95]. To encode
and decode with a bit-matrix, we expand a distribution matrix in GF (2w) by a factor of w in each direction
to yield a w(k + m) × wk matrix which we call a binary distribution matrix (BDM). We multiply that by
a wk element vector, which is composed of w bits from each data device. The product is a w(k +m) element
vector composed of w bits from each data and coding device. This is depicted in Figure 4. It is useful to
visualize the matrix as being composed of w × w sub-matrices.

Figure 4: Describing a coding system with a bit-matrix-vector product.

As with the matrix-vector product in GF (2w), each row of the product corresponds to a row of the BDM,
and is computed as the dot product of that row and the data bits. Since all elements are bits, we may
perform the dot product by taking the XOR of each data bit whose element in the matrix’s row is one. In
other words, rather than performing the dot product with additions and multiplications, we perform it only
with XORs. Moreover, the performance of this dot product is directly related to the number of ones in the
row. Therefore, it behooves us to find matrices with few ones.

Decoding with bit-matrices is the same as with matrices over GF (2w), except now each device corresponds
to w rows of the matrix, rather than one. Also keep in mind that a bit in this description corresponds to a
packet in the implementation.

While the classic construction of bit-matrices starts with a standard distribution matrix in GF (2w), it
is possible to construct bit-matrices that have no relation to Galois Field arithmetic yet still have desired
coding and decoding properties. The minimal density RAID-6 codes work in this fashion.
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4.1 Using a schedule rather than a bit-matrix

Consider the act of encoding with a bit-matrix. We give an example in Figure 5, where k = 3, w = 5, and
we are calculating the contents of one coding device. The straightforward way to encode is to calculate the
five dot products for each of the five bits of the coding device, and we can do that by traversing each of the
five rows, performing XORs where there are ones in the matrix.

Figure 5: An example super-row of a bit-matrix for k = 3, w = 5.

Since the matrix is sparse, it is more efficient to precompute the coding operations, rather than traversing
the matrix each time one encodes. The data structure that we use to represent encoding is a schedule, which
is a list of 5-tuples:

< op, sd, sb, dd, db >,

where op is an operation code: 0 for copy and 1 for XOR, sd is the id of the source device and sb is the bit
of the source device. The last two elements, dd and db are the destination device and bit. By convention, we
identify devices using integers from zero to k + m− 1. An id i < k identifies data device Di, and an id i ≥ k
identifies coding device Ci−k.

A schedule for encoding using the bit-matrix in Figure 5 is shown in Figure 6.

< 0, 0, 0, 3, 0 >, < 1, 1, 1, 3, 0 >, < 1, 2, 2, 3, 0 >, c0,0 = d0,0 ⊕ d1,1 ⊕ d2,2

< 0, 0, 1, 3, 1 >, < 1, 1, 2, 3, 1 >, < 1, 2, 3, 3, 1 >, c0,1 = d0,1 ⊕ d1,2 ⊕ d2,3

< 0, 0, 2, 3, 2 >, < 1, 1, 2, 3, 2 >, < 1, 1, 3, 3, 2 >, < 1, 2, 4, 3, 2 >, c0,2 = d0,2 ⊕ d1,2 ⊕ d1,3 ⊕ d2,4

< 0, 0, 3, 3, 3 >, < 1, 1, 4, 3, 3 >, < 1, 2, 0, 3, 3 >, c0,3 = d0,3 ⊕ d1,4 ⊕ d2,0

< 0, 0, 4, 3, 4 >, < 1, 1, 0, 3, 4 >, < 1, 2, 0, 3, 4 >, < 1, 2, 1, 3, 4 > . c0,4 = d0,4 ⊕ d1,0 ⊕ d2,0 ⊕ d2,1

(a) (b)

Figure 6: A schedule of bit-matrix operations for the bit-matrix in Figure 5. (a) shows the schedule, and
(b) shows the dot-product equations corresponding to each line of the schedule.

As noted in [HDRT05, Pla08b], one can derive schedules for bit-matrix encoding and decoding that make
use of common expressions in the dot products, and therefore can perform the bit-matrix-vector product
with fewer XOR operations than simply traversing the bit-matrix. This is how RDP encoding works with
optimal performance [CEG+04], even though there are more than kw ones in the last w rows of its BDM.
We term such scheduling smart scheduling, and scheduling by simply traversing the matrix dumb scheduling.

5 MDS Codes

A code is MDS if it can recover the data following the failure of any m devices. If a matrix-vector product is
used to define the code, then it is MDS if every combination of k rows composes an invertible matrix. If a bit-
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matrix is used, then we define a super-row to be a row’s worth of w×w submatrices. The code is MDS if every
combination of k super-rows composes an invertible matrix. Again, one may generate an MDS code using
standard techniques such as employing a Vandermonde matrix [PD05] or Cauchy matrix [Rab89, BKK+95].
However, there are other constructions that also yield MDS matrices, such as EVENODD coding [BBBM95],
RDP coding [CEG+04], the STAR code [HX05], Feng’s codes [FDBS05a, FDBS05b] and the minimal density
RAID-6 codes [BR99, Pla08a, Pla08b].

6 Part 1 of the Library: Galois Field Arithmetic (galois.h)

The files galois.h and galois.cpp contain procedures for Galois Field arithmetic in GF (2w) for 1 ≤ w ≤ 32.
There are functions for performing single arithmetic operations, XOR-ing a region of bytes, and performing
multiplication of a region of bytes by a constant in GF (28), GF (216) and GF (232). All of these procedures
are defined in a separate technical report which focuses solely on Galois Field arithmetic [Pla07]. The
following section lists the Galois functions used by jerasure.

6.1 Galois procedures used in Jerasure - galois.cpp

• galois single multiply(int a, int b, int w) and galois single divide(int a, int b, int w): These
perform multiplication and division on single elements a and b of GF (2w).

• galois region xor(char *r1, char *r2, char *r3, int nbytes): This XORs two regions of bytes, r1
and r2, and places the sum in r3. Note that r3 may be equal to r1 or r2 if we are replacing one of
the regions by the sum. Nbytes must be a multiple of 8.

• galois w08 region multiply(unsigned char *region, int multby, int nbytes, unsigned char
*r2, int add): This multiplies an entire region of bytes by the constant multby in GF (28). Region
is overwritten if r2 is NULL. Otherwise, if add is zero, the products are placed in r2. If add is
non-zero, then the products are XOR’d with the bytes in r2. Nbytes must be a multiple of 8.

• galois w16 region multiply() and galois w32 region multiply() are identical to galois w08-
region multiply(), except they are in GF (216) and GF (232) respectively. Nbytes must still be a

multiple of 8.

• galois w08 region multby 2(char *region, int nbytes): This performs the fast multiplication by
two in GF (28) using Anvin’s optimization [Anv07]. Nbytes must be a multiple of 8.

• galois w16 region multby 2() and galois w32 region multby 2() are identical to galois w08 -
region multby 2(), except they are in GF (216) and GF (232) respectively. Nbytes must still be a
multiple of 8.

6.2 Example programs

• galois 01.cpp: This simply demonstrates doing fast multiplication by two in GF (2w) for w ∈ {8, 16, 32}.
It has one parameter: w.

UNIX> galois_01 16

Short 0: 58899 *2 = 56365

Short 1: 54100 *2 = 46755
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Short 2: 64788 *2 = 59939

Short 3: 52269 *2 = 34897

Short 4: 47389 *2 = 25137

Short 5: 42657 *2 = 23881

Short 6: 49248 *2 = 37067

Short 7: 4812 *2 = 9624

UNIX>

This demonstrates usage of galois w08 region multby 2(), galois w16 region multby 2() and
galois w32 region multby 2().

7 Part 2 of the Library: Kernel Classes (jerasure.h)

Jerasure.h contains prototypes of the functions necessary for coding. This header file also specifies the
different classes used in the encoding process. Function declarations are split into object files based on the
class with which they are associated. Each class is explained individually in the following section. We will
decribe the procedures that compose jerasure.h by the .cpp files in which they are found. In Section 7.5,
we demonstrate the usage of these classes with example programs.

7.1 The JER Region class - jerasure.h

The most basic object defined in jerasure.h is the JER Region class. This class contains three properties
which describe a region of a disk. JER Region objects are used by various methods of the JER Slices class.
The class properties are listed below.

• int drive: The id of the drive containing this region (numbered 0 to N-1).

• int start: The index of the first byte in this region.

• int size: The number of bytes in this region.

7.2 Encoding and decoding data - jer slices.cpp

The JER Slices class links the user data to a generator and manages the drive states. JER Slices also
contains the methods related to encoding and decoding data. The class contains the following variables:

• int K: The number of data devices.

• int N: The total number of devices. This is the sum of the number of data devices (K) and the number
of coding devices (M). The number of coding devices is not stored, because it is calculated as N-K.

• JER Gen T *G: The generator used to encode and decode the data.

• int PacketSize: The packet size as defined in section 1. This must be a multiple of 8.

• int PacketsPerSlice: The number of packets in a single device. This must be a multiple of G→WPD.
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• vector 〈unsigned char *〉 Ptrs: This is an array of pointers with one element per device. Each
pointer should point to PacketSize * PacketsPerSlice bytes of data. Ptrs is initialized in the
JER Slices constructors. For constructors with a ptrs argument, Ptrs is set to a copy of ptrs.
Otherwise, Ptrs is resized to size N.

• int DataOnly: This variable is only used for vertical codes. It is set by the user in one of the
JER Slices constructors. When DataOnly 6= 0, it is assumed that the user-provided Ptrs do not
contain encoded data. Therefore, all N drives are set to the down state. If DataOnly = 0, it is
assumed that Ptrs contains encoded data, and all N drives are set to the up state.

• vector 〈int〉 States: This vector describes whether a particular drive is up, down, or unusable. The
state of the ith drive is stored in States[i]. Valid values for elements of States include 0, 1, or 2,
corresponding respectively to a drive being up, down, or unusable. The JER Slices constructors
resize States to size N.

• int NumberOfCores: The number of cores that the user’s machine has. This variable is set to a
default value of 1 in the JER Slices constructors. However, users may update the value at any time.
Some procedures, such as encoding or decoding with a bitmatrix, will attempt to create a thread for
each core. Each thread will work independently on its task in order to increase performance.

• string MultiThreadMethod: This variable holds the name of the technique to be used when per-
forming multi-threaded dot products on bit-matrices. The technique names describe the amount of
data that each thread will work with. Valid values include disks, packet rows, packet cols, or packets.
An undefined value will default to the technique that handles the largest chunks of data, while allowing
a separate thread for each core. For example, if we are encoding one drive with NumberOfCores =
4 and MultiThreadMethod = ””, MultiThreadMethod will not default to disks. This is because
only one core would be utilized. The actual method chosen in this situation depends on PacketSize
and PacketsPerSlice.

• int XORs: The total number of bytes that have been xorred. This is incremented after methods call
galois region xor().

• int GF Mults: The total number of bytes that have been multiplied by a constant in GF (2w). This
is incremented when methods call galois w08 region multiply(), galois w16 region multiply(),
galois w32 region multiply(), galois w08 region multby 2(), galois w16 region multby 2(),
or galois w32 region multby 2().

• int Memcpys: The number of bytes that have been copied using memcpy().

The member functions of JER Slices handle the manipulation of the data. All constructors initialize
XORs, GF Mults, and Memcpys to 0, NumberOfCores to 1, and MultiThreadMethod to ””.
The following functions are members of the class.

• JER Slices(int n, int k, int ps, int pps, JER Gen T *g, vector 〈unsigned char *〉 ptrs, int
data only): This constructor is used when data is setup in a format suitable for vertical coding. The
ptrs argument should contain N pointers to memory allocated for the data. If data only = 0, it is
assumed that the data pointed to by ptrs is already properly encoded. All drives are given a state of
up. If data only is non-zero, it is assumed that the data is not encoded. All drives are given a state
of down. Encode() is not called in this constructor.
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• JER Slices(int n, int k, int ps, int pps, JER Gen T *g, vector 〈unsigned char *〉 ptrs):
This constructor copies the ptrs argument to Ptrs. The first K drive states are up, and the coding
drives are set to down. Encode() is then called, and the coding drives are set to up if encoding occurs
successfully.

• JER Slices(int n, int k, int ps, int pps, JER Gen T *g): This constructor resizes Ptrs to
contain N elements. The first K drives are set to up, and the coding drives are set to down. Encode()
is not called.

• void Add Partial Failure(int drive, int start, int size): Creates a new JER Region object,
sets its values, and appends it to Pfs.

• void Add Partial Failure(JER Region &r): Appends the JER Region argument to Pfs.

• void Add Drive Failure(int drive): Assigns a state of down to the device with an id of drive
(States[drive] = 1).

• int Recover Partial Failures(): For each partial failure in Pfs, this calls Dotprod and attempts to
recover from the failure. If the partial failure is fixed, the JER Region element is remove from Pfs.
This method returns the number of remaining JER Regions in Pfs.

• int Update Region(int drive, int start, int size, unsigned char *new data): This method
updates the region of the drive with an id of drive. If a data drive is updated, it attempts to re-encode
the corresponding regions of all M coding drives by calling Recover Partial Failures(). If a coding
drive is updated, the function will always return 0. If a data drive is updated, this function returns
the number of partial failures remaining in the drives. Therefore, the function returns 0 on success.

• int Update Region(JER Region &r, unsigned char *new data): This method updates the
region of the drive with an id of drive. If a data drive is updated, it attempts to re-encode the
corresponding regions of all M coding drives by calling Recover Partial Failures(). If a coding
drive is updated, the function will always return 0. If a data drive is updated, this function returns
the number of partial failures remaining in the drives. Therefore, the function returns 0 on success.

• int Encode(): Encode first calls Recover Partial Failures(). Encode returns -1 if some partial
failures could not be recovered from.

If the generator matrix is a bitmatrix (G→M→W = 1), the procedure first tries to find an encoding
schedule. If the schedule is found, it is used to encode. Otherwise, encoding is performed by calling
Dotprod().For generator matrices with W 6= 1, this encodes with a matrix in GF (2w) as described in
Section 3 above. If (N-K) = 2, and the generator’s rs r6 property is true, this encodes using Anvin’s
optimization [Anv07]. Encoding via Anvin’s method does not require the generator to have a matrix,
because the coding matrix is implicit.

Sets all coding drive states to up and returns 0 on success; sets all drive states to down and returns -1
on failure.

• int Decode(): Decode first calls Recover Partial Failures(). Decode returns -1 if some partial
failures could not be recovered from.
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If the generator matrix is a bitmatrix (G→M→W = 1) and (N-K) = 2, the procedure tries to
find the schedule matching the current drive states. If the schedule is found, it is used to decode.
Otherwise, decoding is performed by calling Dotprod(). For generator matrices with W 6= 1, this
decodes using a matrix in GF (2w), W ∈ {8, 16, 32}. This works by creating a decoding matrix and
performing the matrix/vector product, then re-encoding any erased coding devices. When it is done,
the decoding matrix is discarded. If you want access to the decoding matrix, you should use the
Make Decoding Matrix() method listed below.

Sets all drive states to up and returns 0 on success; leaves drive states unaltered and returns -1
on failure.

• int Decode Schedule Lazy(int smart): This decodes the data using a schedule. It first searches
G→Schedules for a schedule matching the current drive states. If a suitable schedule is not found, it
is created. If smart = 1, the newly created schedule’s type is CSHR. The new schedule is deleted once
decoding is complete, and it is not inserted into G→Schedules. The function will fail if the generator
matrix is not a bitmatrix (if G→W 6= 1). Sets all drive states to up and returns 0 on success; leaves
drive states unaltered and returns -1 on failure.

• int Dotprod(JER Matrix *jm, vector 〈int〉 & jm super row ids, vector 〈int〉 & dest disk ids,
int *dm ids, JER Region *region = NULL): For each element in jm super row ids, this mul-
tiplies the specified super-row of matrix jm by the devices listed in dm ids. Dm ids should either
be NULL, or contain K integers. If dm ids is NULL, the first K devices are used. The result of
multiplying jm’s super-row, jm super row ids[i], by K devices is placed in the device with an id
of dest disk ids[i]. The number of elements in jm super row ids and dest dist ids must match.
When a one is encountered in the matrix jm, the proper XOR/copy operation is performed. Other-
wise, the operation is multiplication by the matrix element in GF (2w) and an XOR into the destination.

If the optional region argument is included, the Dotprod routine may not operate on entire disks.

If NumberOfCores is ≤ 1, this procedure is not multi-threaded, and each destination disk is pro-
cessed separately. If NumberOfCores > 1, this will create multiple threads, and split the work
among them. The exact number of threads and method for dividing the work depends upon the value
of MultiThreadMethod.

Returns 0 on success, -1 on failure.

• void Remove Drive(int drive): Deletes the device with an id of drive. The drive’s entries in Ptrs
and States are erased. The generator matrix is modified to work with N-1 devices.

• void Remove Drive And Re Encode(int drive): This simply calls Remove Drive(drive) then
Encode().

• JER Matrix * Make Decoding Matrix(int *dm ids): This does not decode, but instead creates
the decoding matrix. Note that dm ids should be allocated to hold K integers. This procedure, will
fill dm ids with the ids of the first K disks with states of up. Returns NULL on failure.

• void Do Parity(unsigned char * parity ptr): This calculates the parity of the first K devices in
Ptrs and puts the result into the memory pointed to by parity ptr. It assumes that parity ptr has
been allocated by the user to a size of PacketSize * PacketsPerSlice bytes.
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7.3 Generator matrices and scheduling - jer gen t.cpp

The JER Gen T class handles the generator matrix and scheduling. Procedures in reed sol.cpp and bit-
matrices.cpp are used to create generators for various coding schemes. The variables that are members of
this class are as follows:

• int K: Identical to K in JER Slices, number of data drives.

• int N: Identical to N in JER Slices, total number of drives.

• JER Matrix * M: The coding matrix. For systematic codes, the matrix is of size (K*WPD) X
((N-K)*WPD). Otherwise, the dimensions are (K*WPD)X(N*WPD).

• int WPD: Words per drive. Indicates how many rows/columns of M are to be grouped together and
considered as a super-row/column. Generally used when dealing with bitmatrices.

• bool Systematic: Whether or not the generator represents a systematic code. This is set for the user
in the generator creation functions.

• bool PDrive: Parity drive. This is set for the user in the generator creation functions. Whether or
not the first row of the coding matrix is all ones. When the coding matrix is a bitmatrix, this property
should be true when the first WPD rows compose K identity matrices. When (N-K) > 1 and the
first row of the coding matrix is composed of all ones, then there are times when we can improve the
performance of decoding by not following the methodology described in Section 3. This is true when
coding device zero is one of the survivors, and more than one data device has been erased. In this
case, it is better to decode all but one of the data devices as described in Section 3, but decode the
last data device using the other data devices and coding device zero. For this reason, PDrive should
be true if the first row of the coding matrix is all ones.

• bool rs r6: Whether or not the generator matrix is a Reed-Solomon RAID 6 coding matrix. This
property defaults to false, but it is set to true in RS R6 Generator() (located in reed sol.cpp). If
rs r6 is true, Encode() will use Anvin’s optimization [Anv07].

• map 〈string, JER Schedule *〉 Schedules: Cache containing encode and decode schedules. The
map is keyed on strings of N 1’s and 0’s. The ith character represents the state of the ith drive (0 =
up and 1 = down).

The following methods are members of the JER Gen T class.

• ∼JER Gen T(): The class deconstructor simply calls the Delete Schedules() method explained
below.

• int Am I MDS(): Determines if the coding matrix, M, represents a maximum distance separable
(MDS) code. The generator is MDS if M is invertible when any combinations of (N-K) rows are
removed. Returns 1 if the matrix is MDS, 0 if it is not MDS, and -1 on failure.

• int Create Encode Schedule(int smart): This method creates a schedule for encoding. If smart
= 1, the newly created schedule’s type is CSHR. The new schedule is inserted into the Schedules
map. If the map already contains an encode schedule, the old schedule will be deleted. If M is not a
bitmatrix (M→W 6= 1), nothing is done and Create Encode Schedule() returns failed. Returns 0
on success, -1 on failure.
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• int Create R6 Schedules(int smart): First, this method deletes all schedules in Schedules. It
then generates the encoding schedule, and schedules for every combination of single and double-disk
erasure decoding. If smart = 1, it creates CSHR schedules. If M is not a bitmatrix (M→W 6= 1) or
(N-K)6= 2, nothing is done and Create R6 Schedules() returns failed. Returns 0 on success, -1 on
failure.

• void Delete Schedules(): This method calls delete on all of the schedules in Schedules. The
Schedules map is then emptied. This is called for the user in JER Gen T’s deconstructor.

• JER Schedule * Create Single Decode Schedule(vector 〈int〉 & erased, int smart): Returns
a schedule for decoding given a set of failed drives. If M is not a bitmatrix (M→W 6= 1), nothing is
done and returns failed. Returns NULL on failure.

• JER Gen T *Genmatrix To Genbitmatrix(): This method is called on a generator whose coding
matrix has W 6= 1. It returns a new generator whose coding matrix has W = 1. The newly returned
generator’s properties, including WPD, are updated accordingly. Returns NULL on failure.

• JER Gen T *Genbitmatrix To Genmatrix(): This method is called on a generator whose coding
matrix has W = 1. It returns a new generator whose coding matrix has W = WPD. The newly
returned generator’s properties, including WPD, are updated accordingly. Returns NULL on failure.

• int Genmatrix To Genbitmatrix(JER Gen T &bgen): This method is called on a matrix gen-
erator, and passed a JER Gen T object (bgen). Bgen is converted to a bitmatrix representation of
the current generator. Returns 0 on success, -1 on failure.

• int Genbitmatrix To Genmatrix(JER Gen T &gen): This method is called on a bitmatrix
generator. The argument, gen, is converted to a matrix representation of the current generator.
Returns 0 on success, -1 on failure.

7.4 Matrices and their basic operations - jer matrix.cpp

The JER Matrix class handles all objects and operations associated with matrices and matrix manipulation.
The JER Matrix class contains the following variables:

• int R: The number of rows the matrix contains.

• int C: The number of columns the matrix contains.

• int W: All elements of the matrix will be elements of GF(2W ) and the galois field will be used in all
operations concerning this matrix.

• vector〈uint64 t〉 Elts: The container in which the elements reside. The packing of the vector is
dependent upon W. For bitmatrices (W = 1), each number in the matrix is stored as a single bit. In
matrices with 2≤W≤8, numbers are stored as 1 byte. In matrices with 9≤W≤16, numbers are stored
as 2 bytes. In matrices with 17≤W≤32, numbers are stored as 4 bytes.

The following lists the methods of the JER Matrix class. Any mention of the matrix refers to the JER Matrix
object through which the method is being called.

• JER Matrix(): Constructs a matrix object, but does not initialize any variables.
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• JER Matrix( int r, int c, int w ): Constructs a matrix object, initializes R, C, and W to the
specified values, and resizes Elts appropriately. Elts contains all zeros after resizing.

• int Create Empty( int r, int c, int w ): Sets R, C, and W accordingly. Clears the values in Elts
and resizes the vector to be of appropriate size. Elts contains all zeros after resizing. Return 0 on
success, -1 on failure.

• int Create Identity( int r, int c, int w ): Sets R, C, and W accordingly. Resizes Elts appropriately
and sets the values on the diagonal to ones in order to create an identity matrix. If r6=c, nothing is
done and Create Identity() returns failed. Returns 0 on success, -1 on failure.

• void Set( int r, int c, uint64 t val ): Sets the r,c element of the matrix to val. Behavior is not
specified if val/∈ GF (2W ).

• uint64 t Get( int r, int c ): Returns the value of the r,c element.

• void Print(): Prints the matrix to stdout.

• void Print( int WPD ): Prints the matrix to stdout. Adds extra padding every WPD rows and
columns to help distinguish super-rows and super-columns in the case of a bitmatrix.

• string String(): Returns a string of the contents of the matrix.

• string String( int WPD ): Returns a string of the contents of the matrix. Adds extra padding every
WPD rows and columns to help distinguish super rows and super columns in the case of a bitmatrix.

• int Copy( JER Matrix* m ): Sets R, C, and W to that of m. Copies the elements of m into the
matrix, resizing Elts in the process. Returns 0 on success, -1 on failure.

• int Add( JER Matrix *m ): Xors each element of the matrix with its corresponding element in m,
stores the result in the matrix. If R, C, W 6= m→ R, m→ C, m→ W, nothing is done and Add()
returns failed. Returns 0 on success, -1 on failure.

• int Append Row( JER Matrix *m, int r ): Appends the rth row of m to the matrix. If C, W
6= m→ C, m→ W, nothing is done and Append Row() returns failed. Returns 0 on success, -1 on
failure.

• int Append Col( JER Matrix *m, int c ): Appends the cth column of m to the matrix. If R, W
6= m→ R, m→ W, nothing is done and Append Col() returns failed. Returns 0 on success, -1 on
failure.

• int Delete Row( int r ): Deletes the rth row of the matrix. Resizes Elts accordingly. Returns 0 on
success, -1 on failure.

• int Delete Col( int c ): Deletes the cth column of the matrix. Resizes Elts accordingly. Returns 0
on success, -1 on failure.

• int Delete Rows( int starting r, int nr ): Deletes nr rows of the matrix, beginning with row
starting r. Resizes Elts accordingly. Returns 0 on success -1 on failure.

• int Delete Cols( int starting c, int nc ): Deletes nc columns of the matrix, beginning with column
starting c. Resizes Elts accordingly. Returns 0 on success -1 on failure.
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• int Copy Panel( JER Matrix *m, int dest r, int dest c ): Copies m into the matrix placing
m[0][0] at matrix[dest r][dest c]. If R < m→R + dest r or C < m→C + dest c or W 6= m→W,
nothing is done and Copy Panel() returns failed. Returns 0 on success, -1 on failure.

• int Copy Panel( JER Matrix *m, int src r, int src c,int dest r, int dest c, int nr, int nc ):
Copies an nr by nc portion of m into the matrix placing m[src r][src c] at matrix[dest r][dest c].
If R < nr + dest r or C < nc + dest c or m→R < nr + src r or m→C < nc + src c or W 6=
m→W, nothing is done and Copy Panel() returns failed. Returns 0 on success, -1 on failure.

• int Add Panel( JER Matrix *m, int dest r, int dest c ): Adds m into the matrix xorring m[0][0]
with matrix[dest r][dest c]. If R < m→R + dest r or C < m→C + dest c or W 6= m→W, nothing
is done and Add Panel() returns failed. Returns 0 on success, -1 on failure.

• int Add Panel( JER Matrix *m, int src r, int src c,int dest r, int dest c, int nr, int nc ):
Adds an nr by nc portion of m into the matrix xorring m[src r][src c] with matrix[dest r][dest c].
If R < nr + dest r or C < nc + dest c or m→R < nr + src r or m→C < nc + src c or W 6=
m→W, nothing is done and Add Panel() returns failed. Returns 0 on success, -1 on failure.

• void Horizontal Rotate( int cols ): Shifts each column of the matrix left by cols, wrapping around
those columns who would go out of range. If cols is negative, the columns are shifted right.

• void Vertical Rotate( int rows ): Shifts each row of the matrix up by rows, wrapping around
those rows who would go out of range. If rows is negative, the rows are shifted down.

• void Swap Rows( int r1, int r2 ): Swaps rows r1 and r2 of the matrix.

• void Swap Cols( int c1, int c2 ): Swaps columns c1 and c2 of the matrix.

• void Row PlusEquals( int r1, int r2 ): Stores in row r1 the xor of rows r1 and r2.

• void Col PlusEquals( int c1, int c2 ): Stores in column c1 the xor of columns c1 and c2.

• void Row PlusEquals Prod( int r1, int r2, int prod ): Stores in row r1 the xor of rows r1 and
( r2 * prod ) in GF (2W ).

• void Col PlusEquals Prod( int c1, int c2, int prod ): Stores in column c1 the xor of column c1
and ( c2 * prod ) in GF (2W ).

• void Row TimesEquals( int r1, int prod ): Multiplies row r1 of the matrix by prod in GF (2W ).

• void Col TimesEquals( int c1, int prod ): Multiplies column c1 of the matrix by prod in GF (2W ).

• JER Schedule *To Schedule CSHR( int WPD ): Creates and returns a schedule based off of
the matrix. WPD indicates how many rows/columns form a super-row/column. If W 6= 1 or C,R
= 0, nothing is done and To Schedule CSHR() returns failed. Returns NULL on failure. Uses Code
Specific Hybrid Reconstruction to generate the schedule.

• JER Schedule *To Schedule Dumb( int WPD ): Creates and returns a schedule based off of the
matrix. WPD indicates how many rows/columns form a super-row/column. If W 6= 1 or C,R = 0,
nothing is done and To Schedule Dumb() returns failed. Returns NULL on failure.



7 PART 2 OF THE LIBRARY: KERNEL CLASSES (JERASURE.H) 17

• JER Matrix *Matrix To Bitmatrix(): Creates and returns a matrix that is the bitmatrix repre-
sentation of the original matrix. The returned matrix has W = 1. Returns NULL on failure.

• JER Matrix *Bitmatrix To Matrix( int WPD ): Creates and returns a matrix that is the matrix
representation of the original bitmatrix. WPD indicates the galois field into which to convert the bit-
matrix. The returned matrix has W = WPD. If W 6= 1, nothing is done and Bitmatrix To Matrix()
returns failed. Returns NULL on failure.

• int Matrix To Bitmatrix( JER Matrix &jbm ): Modifies jbm to be the bitmatrix representation
of the original matrix. After conversion, jbm→W = 1. Returns 0 on success, -1 on failure.

• int Bitmatrix To Matrix( JER Matrix &jm, int WPD ): Modifies jm to be the matrix repre-
sentation of the original bitmatrix. WPD indicates the galois field into which to convert the bitmatrix.
After conversion, jm→W = WPD. If W 6= 1, nothing is done and Bitmatrix To Matrix() returns
failed. Returns 0 on success, -1 on failure.

These next methods do not belong to the JER Matrix class, but are stongly associated with the class and
their specifications can be found in jer matrix.cpp.

• JER Matrix *Sum( JER Matrix *m1, JER Matrix *m2 ): Creates and returns a matrix that
is the xor of the two provided matrices. If m1→R, m1→C, m1→W 6= m2→R, m2→C, m2→W,
nothing is done and Sum() returns failed. Returns NULL on failure.

• JER Matrix Sum( JER Matrix &m1, JER Matrix &m2 ): Creates and returns a matrix that
is the xor of the two provided matrices. If m1.R, m1.C, m1.W 6= m2.R, m2.C, m2.W, nothing is
done and Sum() returns an empty matrix (R=0 && C=0).

• int Sum( JER Matrix *m1, JER Matrix *m2, JER Matrix *sum ): Modifies sum to be the
xor of the two provided matrices. If m1→R, m1→C, m1→W 6= m2→R, m2→C, m2→W, nothing
is done and Sum() returns failed. Returns 0 on success, -1 on failure.

• int Sum( JER Matrix &m1, JER Matrix &m2, JER Matrix &sum ): Modifies sum to be
the xor of the two provided matrices. If m1.R, m1.C, m1.W 6= m2.R, m2.C, m2.W, nothing is
done and Sum() returns failed. Returns 0 on success, -1 on failure.

• JER Matrix *Prod( JER Matrix *m1, JER Matrix *m2 ): Creates and returns a matrix that
is the product of the two provided matrices in GF (2W ). If m1→C 6= m2→R or m1→W 6= m2→W,
nothing is done and Prod() returns failed. Returns NULL on failure.

• JER Matrix Prod( JER Matrix &m1, JER Matrix &m2 ): Creates and returns a matrix that
is the product of the two provided matrices in GF (2W ). If m1.C 6= m2.R or m1.W 6= m2.W, nothing
is done and Prod() returns failed. An empty matrix (R=0 && C=0) is returned on failure.

• int Prod( JER Matrix *m1, JER Matrix *m2, JER Matrix *prod ): Modifies prod to be
the product of the two provided matrices in GF (2W ). If m1→C 6= m2→R or m1→W 6= m2→W,
nothing is done and Prod() returns failed. Returns 0 on success, -1 on failure.

• int Prod( JER Matrix &m1, JER Matrix &m2, JER Matrix &prod ): Modifies prod to be
the product of the two provided matrices in GF (2W ). If m1.C 6= m2.R or m1.W 6= m2.W, nothing
is done and Prod() returns failed. Returns 0 on success, -1 on failure.



7 PART 2 OF THE LIBRARY: KERNEL CLASSES (JERASURE.H) 18

• JER Matrix *Inverse( JER Matrix *m1 ): Creates and returns a matrix that is the inverse of
m1. If m1 is not invertible, nothing is done and Inverse() returns failed. Returns NULL on failure.

• JER Matrix Inverse( JER Matrix *m1 ): Creates and returns a matrix that is the inverse of
m1. If m1 is not invertible, nothing is done and Inverse() returns an empty matrix (R=0 && C=0).

• int Inverse( JER Matrix *m1, JER Matrix *inv ): Modifies inv to be the inverse of m1. If m1
is not invertible, inv is emptied (inv→R=0 && inv→C=0), and Inverse() returns failure. Returns
0 on success, -1 on failure.

• int Inverse( JER Matrix &m1, JER Matrix &inv ): Modifies inv to be the inverse of m1. If
m1 is not invertible, inv is emptied (inv.R=0 && inv.C=0), and Inverse() returns failure. Returns
0 on success, -1 on failure.

7.5 Example programs

The following programs reside in the Examples directory. These demonstrate the usage of the classes
contained in jerasure.h. They are as follows:

• jerasure 01.cpp: This takes three parameters: r, c and w. It creates an r × c matrix in GF (2w),
where the element in row i, column j is equal to 2ci+j in GF (2w). Rows and columns are zero-indexed.
Example:

UNIX> jerasure_01 3 15 8

1 2 4 8 16 32 64 128 29 58 116 232 205 135 19

38 76 152 45 90 180 117 234 201 143 3 6 12 24 48

96 192 157 39 78 156 37 74 148 53 106 212 181 119 238

UNIX>

This demonstrates usage of galois single multiply(), JER Matrix::Set(), and JER Matrix::Print().

• jerasure 02.cpp: This takes three parameters: r, c and w. It creates the same matrix as in jera-
sure 01, and then converts it to a rw × cw bit-matrix and prints it out. Example:

UNIX> jerasure_02 3 10 4

1000 0001 0010 0100 1001 0011 0110 1101 1010 0101

0100 1001 0011 0110 1101 1010 0101 1011 0111 1111

0010 0100 1001 0011 0110 1101 1010 0101 1011 0111

0001 0010 0100 1001 0011 0110 1101 1010 0101 1011

1011 0111 1111 1110 1100 1000 0001 0010 0100 1001

1110 1100 1000 0001 0010 0100 1001 0011 0110 1101

1111 1110 1100 1000 0001 0010 0100 1001 0011 0110

0111 1111 1110 1100 1000 0001 0010 0100 1001 0011

0011 0110 1101 1010 0101 1011 0111 1111 1110 1100

1010 0101 1011 0111 1111 1110 1100 1000 0001 0010

1101 1010 0101 1011 0111 1111 1110 1100 1000 0001

0110 1101 1010 0101 1011 0111 1111 1110 1100 1000

UNIX>

This demonstrates usage of galois single multiply(), JER Matrix::Set(), JER Matrix::Matrix -
To Bitmatrix(), and JER Matrix::Print().
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• jerasure 03.cpp: This takes three parameters: k and w. It creates a k×k Cauchy matrix in GF (2w),
and tests invertibility.

The parameter k must be less than 2w. The element in row i, column j is set to:

1

i ⊕ (2w − j − 1)

where division is in GF (2w), ⊕ is XOR and subtraction is regular integer subtraction. When k > 2w−1,
there will be i and j such that i ⊕ (2w − j − 1) = 0. When that happens, we set that matrix element
to zero.

After creating the matrix and printing it, we test whether it is invertible. If k ≤ 2w−1, then it will
be invertible. Otherwise it will not. Then, if it is invertible, it prints the inverse, then multplies the
inverse by the original matrix and prints the product which is the identity matrix. Examples:

UNIX> jerasure_03 4 3

The Cauchy Matrix:

4 3 2 7

3 4 7 2

2 7 4 3

7 2 3 4

Invertible: Yes

Inverse:

1 2 5 3

2 1 3 5

5 3 1 2

3 5 2 1

Inverse times matrix (should be identity):

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

UNIX>

UNIX> jerasure_03 5 3

The Cauchy Matrix:

4 3 2 7 6

3 4 7 2 5

2 7 4 3 1

7 2 3 4 0

6 5 1 0 4

Invertible: No

UNIX>

This demonstrates usage of galois single divide(), JER Matrix::Set(), JER Matrix::Print(),
Inverse(), and Prod().

• jerasure 04.cpp: This does the exact same thing as jerasure 03, except it uses JER Matrix::Matrix -
To Bitmatrix() to convert the Cauchy matrix to a bit-matrix, and then uses the bit-matrix operations
to test invertibility and to invert the matrix. Examples:
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UNIX> jerasure_04 4 3

The Cauchy Bit-Matrix:

010 101 001 111

011 111 101 100

101 011 010 110

101 010 111 001

111 011 100 101

011 101 110 010

001 111 010 101

101 100 011 111

010 110 101 011

111 001 101 010

100 101 111 011

110 010 011 101

Invertible: Yes

Inverse:

100 001 110 101

010 101 001 111

001 010 100 011

001 100 101 110

101 010 111 001

010 001 011 100

110 101 100 001

001 111 010 101

100 011 001 010

101 110 001 100

111 001 101 010

011 100 010 001

Inverse times matrix (should be identity):

100 000 000 000

010 000 000 000

001 000 000 000

000 100 000 000

000 010 000 000

000 001 000 000

000 000 100 000

000 000 010 000

000 000 001 000

000 000 000 100

000 000 000 010

000 000 000 001

UNIX>

UNIX> jerasure_04 5 3

The Cauchy Bit-Matrix:



8 PART 3 OF THE LIBRARY: REED-SOLOMON CODING (REED SOL.H) 21

010 101 001 111 011

011 111 101 100 110

101 011 010 110 111

101 010 111 001 110

111 011 100 101 001

011 101 110 010 100

001 111 010 101 100

101 100 011 111 010

010 110 101 011 001

111 001 101 010 000

100 101 111 011 000

110 010 011 101 000

011 110 100 000 010

110 001 010 000 011

111 100 001 000 101

Invertible: No

UNIX>

This demonstrates usage of galois single divide(), JER Matrix::Set(), JER Matrix::Matrix -
To Bitmatrix(), JER Matrix::Print(), Inverse(), and Prod().

8 Part 3 of the Library: Reed-Solomon Coding (reed sol.h)

The files Reed sol.h and reed sol.cpp implement procedures that are specific to Vandermonde matrix-
based Reed-Solomon coding, Cauchy matrix-based Reed-Solomon coding, and for Reed-Solomon coding
optimized for RAID-6. Refer to [Pla97, PD05] for a description of classic Reed-Solomon coding and to [Anv07]
for Reed-Solomon coding optimized for RAID-6. Methods beginning with RS refer to Vandermonde based
codings. The methods beginning with CRS are Cauchy based, and those beginning with RS R6 are opitimized
for RAID-6. Where not specified, the parameters are as described in Section 7.

8.1 Cauchy matrices

We don’t use the Cauchy matrices described in [PX06], because there is a simple heuristic that creates better
matrices:

• Construct the usual Cauchy matrix M such that M [i, j] = 1
i⊕(m+j) , where division is over GF (2w), ⊕

is XOR and the addition is regular integer addition.

• For each column j, divide each element (in GF (2w)) by M [0, j]. This has the effect of turning each
element in row 0 to one.

• Next, for each row i > 0 of the matrix, do the following:

– Count the number of ones in the bit representation of the row.



8 PART 3 OF THE LIBRARY: REED-SOLOMON CODING (REED SOL.H) 22

– Count the number of ones in the bit representation of the row divided by element M [i, j] for
each j.

– Whichever value of j gives the minimal number of ones, if it improves the number of ones in the
original row, divide row i by M [i, j].

While this does not guarantee an optimal number of ones, it typically generates a good matrix. For
example, suppose k = m = w = 3. The matrix M is as follows:

6 7 2
5 2 7
1 3 4

First, we divide column 0 by 6, column 1 by 7 and column 2 by 2, to yield:

1 1 1
4 3 6
3 7 2

Now, we concentrate on row 1. Its bitmatrix representation has 5+7+7 = 19 ones. If we divide it by 4, the
bitmatrix has 3+4+5 = 12 ones. If we divide it by 3, the bitmatrix has 4+3+4 = 11 ones. If we divide it
by 6, the bitmatrix has 6+7+3 = 16 ones. So, we replace row 1 with row 1 divided by 3.

We do the same with row 2 and find that it will have the minimal number of ones when it is divided by
three. The final matrix is:

1 1 1
5 1 2
1 4 7

This matrix has 34 ones, a distinct improvement over the original matrix that has 46 ones. The best matrix
in [PX06] has 39 ones. This is because the authors simply find the best X and Y , and do not modify the
matrix after creating it.

8.2 Reed-Solomon generators - reed sol.cpp

The following are the methods used to generate matrices for Reed-Solomon coding:

• int CRS N Ones( int n, int w ): Returns the number of ones in the bitmatrix representation of
the number n. The argument n must exist in GF (2w).

• JER Matrix *RS Nonsystematic Matrix(int n, int k, int w): Creates and returns a non-
systematic Vandermonde matrix for Reed-Solomon coding. If n,k > 2w, nothing is done and RS -
Nonsystematic Matrix() returns failed. Returns NULL on failure.

• JER Gen T *RS Nonsystematic Generator(int n, int k, int w): Creates and returns a gener-
ator containing a non-systematic Vandermonde matrix for Reed-Solomon coding. If n,k > 2w, nothing
is done and RS Nonsystematic Generator() returns failed. Returns NULL on failure.

• int RS Nonsystematic Generator(int n, int k, int w, JER Gen T &g): Modifies g to be a
generator containing a non-systematic Vandermonde matrix for Reed-Solomon coding. If n,k > 2w,
nothing is done and RS Nonsystematic Generator() returns failed. Return 0 on success, -1 on
failure.
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• JER Matrix *RS Extended Matrix(int n, int k, int w): Creates and returns an extended
systematic Vandermonde matrix for Reed-Solomon coding. If n,k > 2w, nothing is done and RS -
Extended Matrix() returns failed. Returns NULL on failure.

• JER Gen T *RS Extended Generator(int n, int k, int w): Creates and returns a generator
containing an extended Vandermonde matrix for Reed-Solomon coding. If n,k > 2w, nothing is done
and RS Extended Generator() returns failed. Returns NULL on failure.

• int RS Extended Generator(int n, int k, int w, JER Gen T &g): Modifies g to be a generator
containing an extended Vandermonde matrix for Reed-Solomon coding. If n,k > 2w, nothing is done
and RS Extended Generator() returns failed. Return 0 on success, -1 on failure.

• JER Matrix *RS Classic Matrix(int n, int k, int w): Creates and returns an extended system-
atic Vandermonde matrix for Reed-Solomon coding. If n,k > 2w, nothing is done and RS Classic -
Matrix() returns failed. Returns NULL on failure.

• JER Gen T *RS Classic Generator(int n, int k, int w): Creates and returns a generator con-
taining a Vandermonde matrix for Reed-Solomon coding. If n,k > 2w, nothing is done and RS -
Classic Generator() returns failed. Returns NULL on failure.

• int RS Classic Generator(int n, int k, int w, JER Gen T &g): Modifies g to be a generator
containing a Vandermonde matrix for Reed-Solomon coding. If n,k > 2w, nothing is done and RS -
Classic Generator() returns failed. Return 0 on success, -1 on failure.

• JER Gen T *RS R6 Generator( int k, int w): Creates and returns a generator containing a
matrix for RAID-6 Reed-Solomon coding. If n,k > 2w, nothing is done and RS R6 Generator()
returns failed. Returns NULL on failure.

• int RS R6 Generator(int k, int w, JER Gen T &g): Modifies g to be a generator containing
a matrix for RAID-6 Reed-Solomon coding. If n,k > 2w, nothing is done and RS R6 Generator()
returns failed. Return 0 on success, -1 on failure.

• JER Gen T *CRS Generator(int k, int m, int w): Creates and returns a generator containing
a Cauchy matrix for Reed-Solomon coding. If m + k > 2w, nothing is done and CRS Generator()
returns failed. Returns NULL on failure.

• int CRS Generator(int k, int m, int w, JER Gen T &g): Modifies g to be a generator containing
a Cauchy matrix for Reed-Solomon coding. If m + k > 2w, nothing is done and CRS Generator()
returns failed. Return 0 on success, -1 on failure.

• JER Gen T *CRS XY Generator(int k, int m, int w, vector 〈int〉 &X, vector 〈int〉 &Y):
Creates and returns a generator containing a Cauchy matrix created based off of the X and Y sets for
Reed-Solomon coding. If m + k > 2w, nothing is done and CRS XY Generator() returns failed.
Returns NULL on failure.

• int CRS XY Generator(int k, int m, int w, vector 〈int〉 &X, vector 〈int〉 &Y, JER Gen T
&g): Modifies g to be a generator containing a Cauchy matrix based off of the X and Y sets matrix
for Reed-Solomon coding. If m + k > 2w, nothing is done and CRS XY Generator() returns failed.
Return 0 on success, -1 on failure.
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• int CRS Improve Generator(JER Gen T *g): Row reduces the matrix held by g to minimize
the number of ones in its bitmatrix representation.

• JER Gen T *CRS Good Generator Bitmatrix(int k, int m, int w): Creates and returns a
generator containing a Cauchy bitmatrix that has been improved. For m = 2, the function returns
an optimal bitmatrix. If m + k > 2w, nothing is done and CRS Good Generator Bitmatrix()
returns failed. Returns NULL on failure.

• int CRS Good Generator Bitmatrix(int k, int m, int w, JER Gen T &g): Modifies g to be
a generator containing a Cauchy bitmatrix that has been improved. For m = 2, the function returns
an optimal bitmatrix. If m + k > 2w, nothing is done and CRS Good Generator Bitmatrix()
returns failed. Returns 0 on success, -1 on failure.

8.3 Example Programs

There are eleven example programs to demonstrate the use of the procedures in reed sol.cpp.

• reed sol rs 01.cpp: This takes three parameters: k, m and w. It performs a classic Reed-Solomon
coding of k devices onto m devices, using a Vandermonde-based distribution matrix in GF (2w). w
must be 8, 16 or 32. Each device is set up to hold 8 bytes. It uses RS Classic Generator() to
generate the distribution matrix, and then procedures from jer slices.cpp to perform the coding and
decoding.

Example:

UNIX> reed_sol_rs_01 7 7 8

Last m rows of the Distribution Matrix:

1 1 1 1 1 1 1

1 199 210 240 105 121 248

1 70 91 245 56 142 167

1 170 114 42 87 78 231

1 38 236 53 233 175 65

1 64 174 232 52 237 39

1 187 104 210 211 105 186

Original data:

Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (down): 00 00 00 00 00 00 00 00

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (down): 00 00 00 00 00 00 00 00

D2 (up): f2 11 95 64 d0 14 e5 49 C2 (down): 00 00 00 00 00 00 00 00

D3 (up): ae bb 33 2f 69 d1 99 58 C3 (down): 00 00 00 00 00 00 00 00

D4 (up): b4 46 5f 5f ba 16 dc 6f C4 (down): 00 00 00 00 00 00 00 00

D5 (up): 3b f7 46 2d 48 08 18 39 C5 (down): 00 00 00 00 00 00 00 00

D6 (up): 5c f4 4e 21 0b 34 c3 5d C6 (down): 00 00 00 00 00 00 00 00

Encoding complete:

Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (up): de 41 66 28 24 b6 f3 03

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (up): 94 f8 b5 5e 55 94 b7 72

D2 (up): f2 11 95 64 d0 14 e5 49 C2 (up): 39 7b 52 ac 33 3b 2a 29

D3 (up): ae bb 33 2f 69 d1 99 58 C3 (up): 6e 92 59 73 af 8e 29 78
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D4 (up): b4 46 5f 5f ba 16 dc 6f C4 (up): fc be 8f ea 1f 84 a0 a8

D5 (up): 3b f7 46 2d 48 08 18 39 C5 (up): 32 89 7b 83 5d 44 2b 33

D6 (up): 5c f4 4e 21 0b 34 c3 5d C6 (up): 19 73 3f b1 ae 72 18 91

Erased 7 random devices:

Data Coding

D0 (up ): c0 c9 fc 5f 6e b1 dd 15 C0 (down): 00 00 00 00 00 00 00 00

D1 (down): 00 00 00 00 00 00 00 00 C1 (up ): 94 f8 b5 5e 55 94 b7 72

D2 (down): 00 00 00 00 00 00 00 00 C2 (down): 00 00 00 00 00 00 00 00

D3 (up ): ae bb 33 2f 69 d1 99 58 C3 (down): 00 00 00 00 00 00 00 00

D4 (up ): b4 46 5f 5f ba 16 dc 6f C4 (up ): fc be 8f ea 1f 84 a0 a8

D5 (up ): 3b f7 46 2d 48 08 18 39 C5 (up ): 32 89 7b 83 5d 44 2b 33

D6 (down): 00 00 00 00 00 00 00 00 C6 (down): 00 00 00 00 00 00 00 00

State of the system after decoding:

Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (up): de 41 66 28 24 b6 f3 03

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (up): 94 f8 b5 5e 55 94 b7 72

D2 (up): f2 11 95 64 d0 14 e5 49 C2 (up): 39 7b 52 ac 33 3b 2a 29

D3 (up): ae bb 33 2f 69 d1 99 58 C3 (up): 6e 92 59 73 af 8e 29 78

D4 (up): b4 46 5f 5f ba 16 dc 6f C4 (up): fc be 8f ea 1f 84 a0 a8

D5 (up): 3b f7 46 2d 48 08 18 39 C5 (up): 32 89 7b 83 5d 44 2b 33

D6 (up): 5c f4 4e 21 0b 34 c3 5d C6 (up): 19 73 3f b1 ae 72 18 91

UNIX>

This demonstrates usage of RS Classic Generator(), JER Matrix::Print(), JER Slices::Encode()
and JER Slices::Decode().

• reed sol rs 02.cpp: This takes three parameters: k, m and w. It creates and prints three matrices
in GF (2w):

1. A (k + m) × k non-systematic Vandermonde Matrix.

2. The (k + m) × k extended Vandermonde matrix created by converting the non-systematic Van-
dermonde matrix into one where the first k rows are an identity matrix. Then row k is converted
so that it is all ones, and the first column is also converted so that it is all ones.

3. The m × k classic Vandermonde coding matrix, which is last m rows of the above matrix. This
is the matrix which is passed to the encoding/decoding procedures of jer slices.cpp. Note that
the first row of this matrix is all ones, so the generator’s PDrive argument will be set to true.

Note also that w may have any value from 1 to 32.

Example:

UNIX> reed_sol_rs_02 6 4 11

Non-systematic Vandermonde Matrix:

1 0 0 0 0 0

1 1 1 1 1 1

1 2 4 8 16 32

1 3 5 15 17 51

1 4 16 64 256 1024
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1 5 17 85 257 1285

1 6 20 120 272 1632

1 7 21 107 273 1911

1 8 64 512 10 80

0 0 0 0 0 1

Vandermonde Extended Matrix:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 1 1 1 1 1

1 1879 1231 1283 682 1538

1 1366 1636 1480 683 934

1 1023 2045 1027 2044 1026

Vandermonde Classic Coding Matrix:

1 1 1 1 1 1

1 1879 1231 1283 682 1538

1 1366 1636 1480 683 934

1 1023 2045 1027 2044 1026

UNIX>

This demonstrates usage of RS Nonsystematic Matrix(), RS Extended Matrix(), RS Classic -
Matrix(), and JER Matrix::Print().

• reed sol rs r6 01.cpp: This takes two parameters: k and w. It performs RAID-6 coding using
Anvin’s optimization [Anv07] in GF (2w), where w must be 8, 16 or 32. It then decodes using JER -
Slices::Decode().

Example:

UNIX> reed_sol_rs_r6_01 9 8

Last 2 rows of the Distribution Matrix:

1 1 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 29

Original data:

Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (down): 00 00 00 00 00 00 00 00

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (down): 00 00 00 00 00 00 00 00

D2 (up): f2 11 95 64 d0 14 e5 49

D3 (up): ae bb 33 2f 69 d1 99 58

D4 (up): b4 46 5f 5f ba 16 dc 6f

D5 (up): 3b f7 46 2d 48 08 18 39

D6 (up): 5c f4 4e 21 0b 34 c3 5d

D7 (up): 66 da 6d 63 ea 37 78 32

D8 (up): 81 6d b3 49 83 1c 2a 6c

Encoding complete:
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Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (up): 39 f6 b8 02 4d 9d a1 5d

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (up): 7d a6 d5 a0 23 d8 17 ed

D2 (up): f2 11 95 64 d0 14 e5 49

D3 (up): ae bb 33 2f 69 d1 99 58

D4 (up): b4 46 5f 5f ba 16 dc 6f

D5 (up): 3b f7 46 2d 48 08 18 39

D6 (up): 5c f4 4e 21 0b 34 c3 5d

D7 (up): 66 da 6d 63 ea 37 78 32

D8 (up): 81 6d b3 49 83 1c 2a 6c

Erased 2 random devices:

Data Coding

D0 (up ): c0 c9 fc 5f 6e b1 dd 15 C0 (up): 39 f6 b8 02 4d 9d a1 5d

D1 (up ): 91 67 6b 6f 0a e8 55 0c C1 (up): 7d a6 d5 a0 23 d8 17 ed

D2 (down): 00 00 00 00 00 00 00 00

D3 (up ): ae bb 33 2f 69 d1 99 58

D4 (up ): b4 46 5f 5f ba 16 dc 6f

D5 (up ): 3b f7 46 2d 48 08 18 39

D6 (up ): 5c f4 4e 21 0b 34 c3 5d

D7 (up ): 66 da 6d 63 ea 37 78 32

D8 (down): 00 00 00 00 00 00 00 00

State of the system after decoding:

Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (up): 39 f6 b8 02 4d 9d a1 5d

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (up): 7d a6 d5 a0 23 d8 17 ed

D2 (up): f2 11 95 64 d0 14 e5 49

D3 (up): ae bb 33 2f 69 d1 99 58

D4 (up): b4 46 5f 5f ba 16 dc 6f

D5 (up): 3b f7 46 2d 48 08 18 39

D6 (up): 5c f4 4e 21 0b 34 c3 5d

D7 (up): 66 da 6d 63 ea 37 78 32

D8 (up): 81 6d b3 49 83 1c 2a 6c

UNIX>

This demonstrates usage of RS R6 Generator(), JER Matrix::Print(), JER Slices::Encode(),
and JER Slices::Decode().

• reed sol rs r6 02.cpp: This takes two parameters: k and w, and performs a simple RAID-6 example
using a schedule cache. Again, packetsize is 8 bytes. It sets up a RAID-6 coding matrix whose first row
is composed of ones, and where the element in column j of the second row is equal to 2j in GF (2w). It
converts this to a bit-matrix and creates a smart encoding schedule and a schedule cache for decoding.

It then sets the two coding devices as the erased devices, and encodes using the smart shedule. Next
it deletes two random devices and uses the schedule cache to decode them. Finally, it deletes the first
coding devices and recalculates it using JER Slices::Do Parity() to demonstrate that procedure.

Example:

UNIX> reed_sol_rs_r6_02 5 3

Last (m * w) rows of the Binary Distribution Matrix:
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100 100 100 100 100

010 010 010 010 010

001 001 001 001 001

100 001 010 101 011

010 101 011 111 110

001 010 101 011 111

Original data:

Data Coding

D0 (up): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000

p2 :2eab49560bb0b8b4 p2 :0000000000000000

D1 (up): p0 :0bd068c93e5d224d C1 (down): p0 :0000000000000000

p1 :436c8d9c3a2adfda p1 :0000000000000000

p2 :1dd8ca796a67c4f1 p2 :0000000000000000

D2 (up): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

D3 (up): p0 :204d531e262b5331

p1 :7020241c440a0e2a

p2 :75cb1c4c41f9a5e1

D4 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

Smart Schedule Encoding Complete: - 248 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :3b63e70148fe319d

p1 :05542a27169c39e2 p1 :00445a952734a041

p2 :2eab49560bb0b8b4 p2 :2d459ba74a1ff079

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :77d1e3a32a47d566

p1 :436c8d9c3a2adfda p1 :0534a76a348384b6

p2 :1dd8ca796a67c4f1 p2 :625de4e747f90edc

D2 (up): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

D3 (up): p0 :204d531e262b5331

p1 :7020241c440a0e2a

p2 :75cb1c4c41f9a5e1

D4 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

Deleted both coding drives:

Data Coding

D0 (up): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000

p2 :2eab49560bb0b8b4 p2 :0000000000000000

D1 (up): p0 :0bd068c93e5d224d C1 (down): p0 :0000000000000000

p1 :436c8d9c3a2adfda p1 :0000000000000000

p2 :1dd8ca796a67c4f1 p2 :0000000000000000

D2 (up): p0 :7742fa2948b62d69
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p1 :472e195d0681a900

p2 :622ebb7e026bccdf

D3 (up): p0 :204d531e262b5331

p1 :7020241c440a0e2a

p2 :75cb1c4c41f9a5e1

D4 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

Decoded using the smart decoding schedules: - 248 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :3b63e70148fe319d

p1 :05542a27169c39e2 p1 :00445a952734a041

p2 :2eab49560bb0b8b4 p2 :2d459ba74a1ff079

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :77d1e3a32a47d566

p1 :436c8d9c3a2adfda p1 :0534a76a348384b6

p2 :1dd8ca796a67c4f1 p2 :625de4e747f90edc

D2 (up): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

D3 (up): p0 :204d531e262b5331

p1 :7020241c440a0e2a

p2 :75cb1c4c41f9a5e1

D4 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

Erased 2 random devices:

Data Coding

D0 (up ): p0 :0000000000204a16 C0 (up): p0 :3b63e70148fe319d

p1 :05542a27169c39e2 p1 :00445a952734a041

p2 :2eab49560bb0b8b4 p2 :2d459ba74a1ff079

D1 (down): p0 :0000000000000000 C1 (up): p0 :77d1e3a32a47d566

p1 :0000000000000000 p1 :0534a76a348384b6

p2 :0000000000000000 p2 :625de4e747f90edc

D2 (up ): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

D3 (up ): p0 :204d531e262b5331

p1 :7020241c440a0e2a

p2 :75cb1c4c41f9a5e1

D4 (down): p0 :0000000000000000

p1 :0000000000000000

p2 :0000000000000000

Decoded using the dumb decoding schedules: - 384 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :3b63e70148fe319d

p1 :05542a27169c39e2 p1 :00445a952734a041

p2 :2eab49560bb0b8b4 p2 :2d459ba74a1ff079

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :77d1e3a32a47d566

p1 :436c8d9c3a2adfda p1 :0534a76a348384b6

p2 :1dd8ca796a67c4f1 p2 :625de4e747f90edc

D2 (up): p0 :7742fa2948b62d69
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p1 :472e195d0681a900

p2 :622ebb7e026bccdf

D3 (up): p0 :204d531e262b5331

p1 :7020241c440a0e2a

p2 :75cb1c4c41f9a5e1

D4 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

Erased first coding device:

Data Coding

D0 (up): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000

p2 :2eab49560bb0b8b4 p2 :0000000000000000

D1 (up): p0 :0bd068c93e5d224d C1 (up ): p0 :77d1e3a32a47d566

p1 :436c8d9c3a2adfda p1 :0534a76a348384b6

p2 :1dd8ca796a67c4f1 p2 :625de4e747f90edc

D2 (up): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

D3 (up): p0 :204d531e262b5331

p1 :7020241c440a0e2a

p2 :75cb1c4c41f9a5e1

D4 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

Re-encoded coding device 0 with JER_Slices::Do_Parity() - 96 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (down): p0 :3b63e70148fe319d

p1 :05542a27169c39e2 p1 :00445a952734a041

p2 :2eab49560bb0b8b4 p2 :2d459ba74a1ff079

D1 (up): p0 :0bd068c93e5d224d C1 (up ): p0 :77d1e3a32a47d566

p1 :436c8d9c3a2adfda p1 :0534a76a348384b6

p2 :1dd8ca796a67c4f1 p2 :625de4e747f90edc

D2 (up): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

D3 (up): p0 :204d531e262b5331

p1 :7020241c440a0e2a

p2 :75cb1c4c41f9a5e1

D4 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

UNIX>

This demonstrates usage of RS R6 Generator(), CRS Convert To Bitmatrix(), JER Matrix::Print(),
JER Gen T::Create Encode Schedule(), JER Slices::Encode(), JER Slices::Add Drive Failure(),
JER Gen T::Create R6 Schedules(), JER Slices::Decode(), and JER Slices::Do Parity().

• reed sol crs 01.cpp: This takes four parameters: k, m, w and size, and performs a classic Cauchy
Reed-Solomon coding example in GF (2w). w must be either 8, 16 or 32, and the sum k + m must be
less than or equal to 2w. The total number of bytes for each device is given by size which must be a
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multiple of 8. It first sets up an m × k Cauchy coding matrix where element i, j is:

1

i ⊕ (m + j)

where division is in GF (2w), ⊕ is XOR, and addition is standard integer addition. It prints out these m
rows. The program then creates k data devices each with size bytes of random data and encodes them
into m coding devices using JER Slices::Encode(). It prints out the data and coding in hexadecimal–
one byte is represented by 2 hex digits. Next, it erases m random devices from the collection of data
and coding devices, and prints the resulting state. Then it decodes the erased devices using JER -
Slices::Decode() and prints the restored state. Next, it shows what the decoding matrix looks like
when the first m devices are erased. This matrix is the inverse of the last k rows of the distribution
matrix. And finally, it uses JER Slices::Make Decoding Matrix() and JER Slices::Dotprod()
to show how to explicitly calculate the first data device from the others when the first m devices have
been erased.

Here is an example for w = 8 with 3 data devices and 4 coding devices each with a size of 8 bytes:

UNIX> reed_sol_crs_01 3 4 8 8

The Coding Matrix (the last m rows of the Distribution Matrix):

71 167 122

167 71 186

122 186 71

186 122 167

Original data:

Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (down): 00 00 00 00 00 00 00 00

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (down): 00 00 00 00 00 00 00 00

D2 (up): f2 11 95 64 d0 14 e5 49 C2 (down): 00 00 00 00 00 00 00 00

C3 (down): 00 00 00 00 00 00 00 00

Encoding complete:

Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (up): 90 45 c6 d3 44 ae 35 d3

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (up): 8e 38 4c 6c 52 a2 23 02

D2 (up): f2 11 95 64 d0 14 e5 49 C2 (up): 18 90 5d 4a 02 25 73 42

C3 (up): df 93 97 a7 17 7c 44 41

Erased 4 random devices:

Data Coding

D0 (down): 00 00 00 00 00 00 00 00 C0 (down): 00 00 00 00 00 00 00 00

D1 (up ): 91 67 6b 6f 0a e8 55 0c C1 (up ): 8e 38 4c 6c 52 a2 23 02

D2 (up ): f2 11 95 64 d0 14 e5 49 C2 (down): 00 00 00 00 00 00 00 00

C3 (down): 00 00 00 00 00 00 00 00

State of the system after decoding:

Data Coding

D0 (up): c0 c9 fc 5f 6e b1 dd 15 C0 (up): 90 45 c6 d3 44 ae 35 d3

D1 (up): 91 67 6b 6f 0a e8 55 0c C1 (up): 8e 38 4c 6c 52 a2 23 02

D2 (up): f2 11 95 64 d0 14 e5 49 C2 (up): 18 90 5d 4a 02 25 73 42
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C3 (up): df 93 97 a7 17 7c 44 41

Erased the first 4 devices

Data Coding

D0 (down): 00 00 00 00 00 00 00 00 C0 (down): 00 00 00 00 00 00 00 00

D1 (down): 00 00 00 00 00 00 00 00 C1 (up ): 8e 38 4c 6c 52 a2 23 02

D2 (down): 00 00 00 00 00 00 00 00 C2 (up ): 18 90 5d 4a 02 25 73 42

C3 (up ): df 93 97 a7 17 7c 44 41

Here is the decoding matrix:

130 25 182

252 221 25

108 252 130

And dm_ids:

4 5 6

After calling Dotprod, we calculate the value of device #0 to be:

D0 : c0 c9 fc 5f 6e b1 dd 15

UNIX>

Referring back to the conceptual model in Figure 3, it should be clear in this encoding how the first w
bits of C0 are calculated from the first w bits of each data device:

byte 0 of C0 = (71 × byte 0 of D0) ⊕ (167 × byte 0 of D1) ⊕ (122 × byte 0 of D2)

where multiplication is in GF (28).

However, keep in mind that the implementation actually performs dot products on groups of bytes at
a time. So in this example, where each device holds 8 bytes, the dot product is actually:

8 bytes of C0 = (71 × 8 bytes of D0) ⊕ (167 × 8 bytes of D1) ⊕ (122 × 8 bytes of D2)

This is accomplished using galois w08 region multiply().

Here is a similar example, this time with w = 16 and each device holding 16 bytes:

UNIX> reed_sol_crs_01 3 4 16 16

The Coding Matrix (the last m rows of the Distribution Matrix):

52231 20482 30723

20482 52231 27502

30723 27502 52231

27502 30723 20482

Original data:

Data Coding

D0 (up): c0c9 fc5f 6eb1 dd15 9167 6b6f 0ae8 550c C0 (down): 0000 0000 0000 0000 0000 0000 0000 0000

D1 (up): f211 9564 d014 e549 aebb 332f 69d1 9958 C1 (down): 0000 0000 0000 0000 0000 0000 0000 0000

D2 (up): b446 5f5f ba16 dc6f 3bf7 462d 4808 1839 C2 (down): 0000 0000 0000 0000 0000 0000 0000 0000
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C3 (down): 0000 0000 0000 0000 0000 0000 0000 0000

Encoding complete:

Data Coding

D0 (up): c0c9 fc5f 6eb1 dd15 9167 6b6f 0ae8 550c C0 (up): 8b79 e6cb ab06 4bcc b303 e10b 068b 1576

D1 (up): f211 9564 d014 e549 aebb 332f 69d1 9958 C1 (up): 7c5b 6194 7851 e1f5 9db9 340c 6181 a121

D2 (up): b446 5f5f ba16 dc6f 3bf7 462d 4808 1839 C2 (up): 41e2 4d35 a59b 8c16 0608 a65b d8d3 dcf1

C3 (up): d106 470e d782 63f9 f8e2 1b1e 47de 019c

Erased 4 random devices:

Data Coding

D0 (up ): c0c9 fc5f 6eb1 dd15 9167 6b6f 0ae8 550c C0 (down): 0000 0000 0000 0000 0000 0000 0000 0000

D1 (down): 0000 0000 0000 0000 0000 0000 0000 0000 C1 (down): 0000 0000 0000 0000 0000 0000 0000 0000

D2 (down): 0000 0000 0000 0000 0000 0000 0000 0000 C2 (up ): 41e2 4d35 a59b 8c16 0608 a65b d8d3 dcf1

C3 (up ): d106 470e d782 63f9 f8e2 1b1e 47de 019c

State of the system after decoding:

Data Coding

D0 (up): c0c9 fc5f 6eb1 dd15 9167 6b6f 0ae8 550c C0 (up): 8b79 e6cb ab06 4bcc b303 e10b 068b 1576

D1 (up): f211 9564 d014 e549 aebb 332f 69d1 9958 C1 (up): 7c5b 6194 7851 e1f5 9db9 340c 6181 a121

D2 (up): b446 5f5f ba16 dc6f 3bf7 462d 4808 1839 C2 (up): 41e2 4d35 a59b 8c16 0608 a65b d8d3 dcf1

C3 (up): d106 470e d782 63f9 f8e2 1b1e 47de 019c

Erased the first 4 devices

Data Coding

D0 (down): 0000 0000 0000 0000 0000 0000 0000 0000 C0 (down): 0000 0000 0000 0000 0000 0000 0000 0000

D1 (down): 0000 0000 0000 0000 0000 0000 0000 0000 C1 (up ): 7c5b 6194 7851 e1f5 9db9 340c 6181 a121

D2 (down): 0000 0000 0000 0000 0000 0000 0000 0000 C2 (up ): 41e2 4d35 a59b 8c16 0608 a65b d8d3 dcf1

C3 (up ): d106 470e d782 63f9 f8e2 1b1e 47de 019c

Here is the decoding matrix:

130 260 427

252 448 260

108 252 130

And dm_ids:

4 5 6

After calling JER_Slices::Dotprod(), we calculate the value of device #0 to be:

D0 : c0c9 fc5f 6eb1 dd15 9167 6b6f 0ae8 550c

UNIX>

In this encoding, the 8 16-bit half-words of C0 are calculated as:

(52231 × 8 half-words of D0) ⊕ (20482× 8 half-words of D1) ⊕ (30723× 8 half-words of D2)

using galois w16 region multiply().

This program demonstrates usage of CRS Generator(), JER Matrix::Print(), JER Slices::Encode(),
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JER Slices::Decode(), JER Slices::Add Drive Failure(), JER Slices::Make Decoding Matrix(),
and JER Slices::Dotprod().

• reed sol crs 02.cpp: This takes four parameters: k, m, w and packetsize, and performs a similar
example to reed sol crs 01, except it converts the Cauchy coding matrix to a bit-matrix. k + m
must be less than or equal to 2w and packetsize must be a multiple of 8. It sets up each device to
hold a total of w ∗ packetsize bytes. Here, packets are numbered p0 through pw−1 for each device. It
then performs the same encoding and decoding as the previous example but with the corresponding
bit-matrix procedures.

Here is a run with 3 data devices and 4 coding devices with w = 3 and a packetsize of 8 bytes. (Each
device will hold 3 ∗ 8 = 24 bytes.)

UNIX> reed_sol_crs_02 3 4 3 8

Last (m * w) rows of the Binary Distribution Matrix:

111 001 101

100 101 111

110 010 011

001 111 010

101 100 011

010 110 101

101 010 111

111 011 100

011 101 110

010 101 001

011 111 101

101 011 010

Original data:

Data Coding

D0 (up): p0 :15ddb16e5ffcc9c0 C0 (down): p0 :0000000000000000

p1 :0c55e80a6f6b6791 p1 :0000000000000000

p2 :49e514d0649511f2 p2 :0000000000000000

D1 (up): p0 :5899d1692f33bbae C1 (down): p0 :0000000000000000

p1 :6fdc16ba5f5f46b4 p1 :0000000000000000

p2 :391808482d46f73b p2 :0000000000000000

D2 (up): p0 :5dc3340b214ef45c C2 (down): p0 :0000000000000000

p1 :327837ea636dda66 p1 :0000000000000000

p2 :6c2a1c8349b36d81 p2 :0000000000000000

C3 (down): p0 :0000000000000000

p1 :0000000000000000

p2 :0000000000000000

Encoding complete:

Data Coding

D0 (up): p0 :15ddb16e5ffcc9c0 C0 (up): p0 :589c6d7411b9d145

p1 :0c55e80a6f6b6791 p1 :77cd772d5619c6ee

p2 :49e514d0649511f2 p2 :280664b745165f02

D1 (up): p0 :5899d1692f33bbae C1 (up): p0 :75c0eca15ad2c1b5

p1 :6fdc16ba5f5f46b4 p1 :5af35fbe3e84d47b
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p2 :391808482d46f73b p2 :0af9075177fa0356

D2 (up): p0 :5dc3340b214ef45c C2 (up): p0 :3075ac666fa6dd3d

p1 :327837ea636dda66 p1 :5b6a674d0755fa70

p2 :6c2a1c8349b36d81 p2 :4b8a261a4ba814cc

C3 (up): p0 :01fe2da824ad4685

p1 :7a041bc93e29e59f

p2 :38848ca62a1db3db

Erased 4 random devices:

Data Coding

D0 (down): p0 :0000000000000000 C0 (down): p0 :0000000000000000

p1 :0000000000000000 p1 :0000000000000000

p2 :0000000000000000 p2 :0000000000000000

D1 (up ): p0 :5899d1692f33bbae C1 (up ): p0 :75c0eca15ad2c1b5

p1 :6fdc16ba5f5f46b4 p1 :5af35fbe3e84d47b

p2 :391808482d46f73b p2 :0af9075177fa0356

D2 (down): p0 :0000000000000000 C2 (up ): p0 :3075ac666fa6dd3d

p1 :0000000000000000 p1 :5b6a674d0755fa70

p2 :0000000000000000 p2 :4b8a261a4ba814cc

C3 (down): p0 :0000000000000000

p1 :0000000000000000

p2 :0000000000000000

State of the system after decoding:

Data Coding

D0 (up): p0 :15ddb16e5ffcc9c0 C0 (up): p0 :589c6d7411b9d145

p1 :0c55e80a6f6b6791 p1 :77cd772d5619c6ee

p2 :49e514d0649511f2 p2 :280664b745165f02

D1 (up): p0 :5899d1692f33bbae C1 (up): p0 :75c0eca15ad2c1b5

p1 :6fdc16ba5f5f46b4 p1 :5af35fbe3e84d47b

p2 :391808482d46f73b p2 :0af9075177fa0356

D2 (up): p0 :5dc3340b214ef45c C2 (up): p0 :3075ac666fa6dd3d

p1 :327837ea636dda66 p1 :5b6a674d0755fa70

p2 :6c2a1c8349b36d81 p2 :4b8a261a4ba814cc

C3 (up): p0 :01fe2da824ad4685

p1 :7a041bc93e29e59f

p2 :38848ca62a1db3db

Erased the first 4 devices

Data Coding

D0 (down): p0 :0000000000000000 C0 (down): p0 :0000000000000000

p1 :0000000000000000 p1 :0000000000000000

p2 :0000000000000000 p2 :0000000000000000

D1 (down): p0 :0000000000000000 C1 (up ): p0 :75c0eca15ad2c1b5

p1 :0000000000000000 p1 :5af35fbe3e84d47b

p2 :0000000000000000 p2 :0af9075177fa0356

D2 (down): p0 :0000000000000000 C2 (up ): p0 :3075ac666fa6dd3d

p1 :0000000000000000 p1 :5b6a674d0755fa70

p2 :0000000000000000 p2 :4b8a261a4ba814cc

C3 (up ): p0 :01fe2da824ad4685

p1 :7a041bc93e29e59f

p2 :38848ca62a1db3db

Here is the decoding matrix:
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101 011 010

111 110 011

011 111 101

001 011 011

101 110 110

010 111 111

110 001 101

001 101 111

100 010 011

And dm_ids:

4 5 6

After calling JER_Slices::Dotprod(), we calculate the value of device #0 to be:

D0 :

p0: 15ddb16e5ffcc9c0

p1: 0c55e80a6f6b6791

p2: 49e514d0649511f2

UNIX>

In this encoding, the first packet of C0 is computed according to the six ones in the first row of the
coding matrix:

C0p0 = D0p0 ⊕ D0p1 ⊕ D0p2 ⊕ D1p2 ⊕ D2p0 ⊕ D2p2

These dot-products are accomplished with galois region xor() .

This program demonstrates usage of CRS Generator(), CRS Convert To Bitmatrix(), JER -
Matrix::Print(), JER Slices::Encode(), JER Slices::Decode(), JER Slices::Add Drive Failure(),
JER Slices::Make Decoding Matrix(), and JER Slices::Dotprod().

• reed sol crs 03.cpp: This takes three parameters: k, m and w. It performs the same coding/decoding
as in reed sol crs 02, except it uses bit-matrix scheduling instead of bit-matrix operations. The
packetsize is set at 8 bytes. It creates a “dumb” and “smart” schedule for encoding, encodes with them
and prints out how many XORs each took. The smart schedule will outperform the dumb one.

Finally, it erases m random devices and decodes with JER Slices::Decode Schedule Lazy(). It
decodes once with a smart schedule and once with a dumb schedule.

Example:

UNIX> reed_sol_crs_03 3 4 3

Last (m * w) rows of the Binary Distribution Matrix:

111 001 101

100 101 111

110 010 011

001 111 010

101 100 011

010 110 101
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101 010 111

111 011 100

011 101 110

010 101 001

011 111 101

101 011 010

Original data:

Data Coding

D0 (up): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000

p2 :2eab49560bb0b8b4 p2 :0000000000000000

D1 (up): p0 :0bd068c93e5d224d C1 (down): p0 :0000000000000000

p1 :436c8d9c3a2adfda p1 :0000000000000000

p2 :1dd8ca796a67c4f1 p2 :0000000000000000

D2 (up): p0 :7742fa2948b62d69 C2 (down): p0 :0000000000000000

p1 :472e195d0681a900 p1 :0000000000000000

p2 :622ebb7e026bccdf p2 :0000000000000000

C3 (down): p0 :0000000000000000

p1 :0000000000000000

p2 :0000000000000000

Dumb Schedule Encoding Complete: - 432 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :234be85f3db6ee07

p1 :05542a27169c39e2 p1 :444afaba1846e41c

p2 :2eab49560bb0b8b4 p2 :63380598287cc9f1

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :3ce17f27632128d2

p1 :436c8d9c3a2adfda p1 :007b83bc3127b530

p2 :1dd8ca796a67c4f1 p2 :58848e25583625c3

D2 (up): p0 :7742fa2948b62d69 C2 (up): p0 :3f859cc07de665ce

p1 :472e195d0681a900 p1 :0209debd05f7fd02

p2 :622ebb7e026bccdf p2 :0d9b22b50721e383

C3 (up): p0 :717233e940cd1381

p1 :6bf70d0a39e15986

p2 :373117ee5d5c4089

Smart Schedule Encoding Complete: - 264 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :234be85f3db6ee07

p1 :05542a27169c39e2 p1 :444afaba1846e41c

p2 :2eab49560bb0b8b4 p2 :63380598287cc9f1

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :3ce17f27632128d2

p1 :436c8d9c3a2adfda p1 :007b83bc3127b530

p2 :1dd8ca796a67c4f1 p2 :58848e25583625c3

D2 (up): p0 :7742fa2948b62d69 C2 (up): p0 :3f859cc07de665ce

p1 :472e195d0681a900 p1 :0209debd05f7fd02

p2 :622ebb7e026bccdf p2 :0d9b22b50721e383

C3 (up): p0 :717233e940cd1381

p1 :6bf70d0a39e15986

p2 :373117ee5d5c4089
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Erased 4 random devices:

Data Coding

D0 (up ): p0 :0000000000204a16 C0 (up ): p0 :234be85f3db6ee07

p1 :05542a27169c39e2 p1 :444afaba1846e41c

p2 :2eab49560bb0b8b4 p2 :63380598287cc9f1

D1 (down): p0 :0000000000000000 C1 (down): p0 :0000000000000000

p1 :0000000000000000 p1 :0000000000000000

p2 :0000000000000000 p2 :0000000000000000

D2 (down): p0 :0000000000000000 C2 (down): p0 :0000000000000000

p1 :0000000000000000 p1 :0000000000000000

p2 :0000000000000000 p2 :0000000000000000

C3 (up ): p0 :717233e940cd1381

p1 :6bf70d0a39e15986

p2 :373117ee5d5c4089

Decoded using a smart schedule - 272 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :234be85f3db6ee07

p1 :05542a27169c39e2 p1 :444afaba1846e41c

p2 :2eab49560bb0b8b4 p2 :63380598287cc9f1

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :3ce17f27632128d2

p1 :436c8d9c3a2adfda p1 :007b83bc3127b530

p2 :1dd8ca796a67c4f1 p2 :58848e25583625c3

D2 (up): p0 :7742fa2948b62d69 C2 (up): p0 :3f859cc07de665ce

p1 :472e195d0681a900 p1 :0209debd05f7fd02

p2 :622ebb7e026bccdf p2 :0d9b22b50721e383

C3 (up): p0 :717233e940cd1381

p1 :6bf70d0a39e15986

p2 :373117ee5d5c4089

Erased the same 4 devices:

Data Coding

D0 (up ): p0 :0000000000204a16 C0 (up ): p0 :234be85f3db6ee07

p1 :05542a27169c39e2 p1 :444afaba1846e41c

p2 :2eab49560bb0b8b4 p2 :63380598287cc9f1

D1 (down): p0 :0000000000000000 C1 (down): p0 :0000000000000000

p1 :0000000000000000 p1 :0000000000000000

p2 :0000000000000000 p2 :0000000000000000

D2 (down): p0 :0000000000000000 C2 (down): p0 :0000000000000000

p1 :0000000000000000 p1 :0000000000000000

p2 :0000000000000000 p2 :0000000000000000

C3 (up ): p0 :717233e940cd1381

p1 :6bf70d0a39e15986

p2 :373117ee5d5c4089

Decoded using a dumb schedule - 352 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :234be85f3db6ee07

p1 :05542a27169c39e2 p1 :444afaba1846e41c

p2 :2eab49560bb0b8b4 p2 :63380598287cc9f1

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :3ce17f27632128d2

p1 :436c8d9c3a2adfda p1 :007b83bc3127b530

p2 :1dd8ca796a67c4f1 p2 :58848e25583625c3
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D2 (up): p0 :7742fa2948b62d69 C2 (up): p0 :3f859cc07de665ce

p1 :472e195d0681a900 p1 :0209debd05f7fd02

p2 :622ebb7e026bccdf p2 :0d9b22b50721e383

C3 (up): p0 :717233e940cd1381

p1 :6bf70d0a39e15986

p2 :373117ee5d5c4089

UNIX>

This demonstrates usage of CRS Generator(), CRS Convert To Bitmatrix(), JER Matrix::Print(),
JER Slices::Create Encode Schedule(), JER Slices::Encode(), JER Slices::Add Drive Failure(),
and JER Slices::Decode Schedule Lazy().

• reed sol crs 04.cpp: This takes two parameters: n and w. It calls CRS N Ones() to determine the
number of ones in the bit-matrix representation of n in GF (2w). Then it converts n to a bit-matrix,
prints it and confirms the number of ones:

UNIX> reed_sol_crs_04 1 5

# Ones: 5

Bitmatrix has 5 ones

10000

01000

00100

00010

00001

UNIX> reed_sol_crs_04 31 5

# Ones: 16

Bitmatrix has 16 ones

11110

11111

10001

11000

11100

UNIX>

This demonstrates usage of JER Matrix::Set(), JER Matrix::Matrix To Bitmatrix(), JER -
Matrix::Get(), CRS N Ones(), and JER Matrix::Print().

• reed sol crs 05.cpp: This takes three parameters: k, m and w. (In this and the following examples,
PacketSize = 8.) It calls CRS Generator() to create an Cauchy matrix, converts it to a bit-
matrix then encodes and decodes with it. Smart scheduling is employed. Lastly, it uses CRS XY -
Generator() to create the same Cauchy matrix. It verifies that the two matrices are indeed identical.

Example:

UNIX> reed_sol_crs_05 3 3 3

The generator matrix has 46 ones:

6 7 2

5 2 7

1 3 4
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Original data:

Data Coding

D0 (up): p0 :15ddb16e5ffcc9c0 C0 (down): p0 :0000000000000000

p1 :0c55e80a6f6b6791 p1 :0000000000000000

p2 :49e514d0649511f2 p2 :0000000000000000

D1 (up): p0 :5899d1692f33bbae C1 (down): p0 :0000000000000000

p1 :6fdc16ba5f5f46b4 p1 :0000000000000000

p2 :391808482d46f73b p2 :0000000000000000

D2 (up): p0 :5dc3340b214ef45c C2 (down): p0 :0000000000000000

p1 :327837ea636dda66 p1 :0000000000000000

p2 :6c2a1c8349b36d81 p2 :0000000000000000

Smart Schedule Encoding Complete: - 224 XOR’d bytes

Data Coding

D0 (up): p0 :15ddb16e5ffcc9c0 C0 (up): p0 :27c72fc21f6711c3

p1 :0c55e80a6f6b6791 p1 :70f8a08577598c22

p2 :49e514d0649511f2 p2 :5550bd8d470398df

D1 (up): p0 :5899d1692f33bbae C1 (up): p0 :23014e4e16411ad1

p1 :6fdc16ba5f5f46b4 p1 :75a7f9fa47aea93b

p2 :391808482d46f73b p2 :15baa4354280a14e

D2 (up): p0 :5dc3340b214ef45c C2 (up): p0 :46245fa53ee45f33

p1 :327837ea636dda66 p1 :5c5a0cf8189fda57

p2 :6c2a1c8349b36d81 p2 :2ec822aa7e7139a0

Erased 3 random devices:

Data Coding

D0 (up ): p0 :15ddb16e5ffcc9c0 C0 (up ): p0 :27c72fc21f6711c3

p1 :0c55e80a6f6b6791 p1 :70f8a08577598c22

p2 :49e514d0649511f2 p2 :5550bd8d470398df

D1 (up ): p0 :5899d1692f33bbae C1 (down): p0 :0000000000000000

p1 :6fdc16ba5f5f46b4 p1 :0000000000000000

p2 :391808482d46f73b p2 :0000000000000000

D2 (down): p0 :0000000000000000 C2 (down): p0 :0000000000000000

p1 :0000000000000000 p1 :0000000000000000

p2 :0000000000000000 p2 :0000000000000000

Decode (lazily) with a smart schedule: 192 XOR’d bytes

Data Coding

D0 (up): p0 :15ddb16e5ffcc9c0 C0 (up): p0 :27c72fc21f6711c3

p1 :0c55e80a6f6b6791 p1 :70f8a08577598c22

p2 :49e514d0649511f2 p2 :5550bd8d470398df

D1 (up): p0 :5899d1692f33bbae C1 (up): p0 :23014e4e16411ad1

p1 :6fdc16ba5f5f46b4 p1 :75a7f9fa47aea93b

p2 :391808482d46f73b p2 :15baa4354280a14e

D2 (up): p0 :5dc3340b214ef45c C2 (up): p0 :46245fa53ee45f33

p1 :327837ea636dda66 p1 :5c5a0cf8189fda57

p2 :6c2a1c8349b36d81 p2 :2ec822aa7e7139a0

Generated the identical matrix using CRS_XY_Generator()

UNIX>
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This demonstrates usage of CRS Generator(), CRS N Ones(), JER Matrix::Print(), JER -
Gen T::Genmatrix To Genbitmatrix(), JER Gen T()::Create Encode Schedule(), JER -
Slices::Encode(), JER Slices::Decode Schedule Lazy(), CRS XY Generator(), and JER -
Matrix::Get().

• reed sol crs 06.cpp: This example differs from reed sol crs 05.cpp in two ways. First, reed sol crs 06.cpp
improves the matrix with CRS Improve Generator(). Secondly, this does not use CRS XY -
Generator() to check that the matrices are identical.

Example:

UNIX> reed_sol_crs_06 3 3 3 | head -n 10

The generator matrix has 46 ones:

6 7 2

5 2 7

1 3 4

The improved generator matrix has 34 ones:

1 1 1

5 1 2

1 4 7

UNIX>

This demonstrates usage of CRS Generator(), CRS N Ones(), JER Matrix::Get(), JER -
Matrix::Print(), CRS Improve Generator(), JER Gen T::Genmatrix To Genbitmatrix(),
JER Gen T()::Create Encode Schedule(), JER Slices::Encode(), and JER Slices::Decode -
Schedule Lazy().

• reed sol crs 07.cpp: This is identical to the previous two, except it calls CRS Good Generator -
Bitmatrix(). Note, when m = 2, w ≤ 11 and k ≤ 1023, these are optimal Cauchy encoding matrices.
That’s not to say that they are optimal RAID-6 matrices (RDP encoding [CEG+04], and Liberation
encoding [Pla08b] achieve this), but they are the best Cauchy matrices.

UNIX> reed_sol_crs_07 10 2 8 | head -n 4

Matrix has 229 ones

1 1 1 1 1 1 1 1 1 1

1 2 142 4 71 8 70 173 3 35

UNIX>

UNIX> reed_sol_crs_06 10 2 8 | head -n 8

The generator matrix has 608 ones:

142 244 71 167 122 186 173 157 221 152

244 142 167 71 186 122 157 173 152 221

The improved generator matrix has 354 ones:

1 1 1 1 1 1 1 1 1 1

82 200 151 172 1 225 166 158 44 13

UNIX>

UNIX> reed_sol_crs_05 10 2 8 | head -n 4
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Matrix has 608 ones

142 244 71 167 122 186 173 157 221 152

244 142 167 71 186 122 157 173 152 221

UNIX>

This demonstrates usage of CRS Good Generator Bitmatrix(), JER Gen T()::Bitmatrix -
To Matrix(), JER Matrix::Get(), JER Matrix::Print(), JER Gen T()::Create Encode Schedule(),
JER Slices::Encode(), and JER Slices::Decode Schedule Lazy().

9 Part 4 of the Library: Bitmatrix-based Coding (bitmatrices.h)

The bitmatrices.h file contains code to create three types of generator matrices: generalized EVENODD,
generalized RDP, and mimal density RAID-6. All of these generators have PDrive = true and Systematic
= true.

Minimal Density RAID-6 codes are MDS codes based on binary matrices which satisfy a lower-bound on
the number of non-zero entries. Unlike Cauchy coding, the bit-matrix elements do not correspond to elements
in GF (2w). Instead, the bit-matrix itself has the proper MDS property. Minimal Density RAID-6 codes
perform faster than Reed-Solomon and Cauchy Reed-Solomon codes for the same parameters. Liberation
coding, Liber8tion coding, and Blaum-Roth coding are three examples of this kind of coding that are
supported in Jerasure. Note that since these codes are RAID-6, m must be 2.

Each coding method places restrictions on the values of k, m, and w. The rules are listed below:

• generalized EVENODD - k ≤ w+1, m ∈ (2,4,5,6,7,8), w+1 is prime. Additional rules apply when
m6=2, and Gen Evenodd Smallest W() should be used to select a valid value of w. [BBV]

• generalized RDP - k ≤ w, m ≥ 2, w+1 is prime

• Blaum-Roth - k ≤ w, m = 2, w+1 is prime [BR99]

• Liber8tion - k ≤ w, m = 2, w = 8 [Pla08a]

• Liberation - k ≤ w, m = 2, w is prime [Pla08b]

9.1 EVENODD, RDP, and minimal density RAID-6 generators - bitmatri-
ces.cpp

The functions found in bitmatrices.cpp are as follows:

• int R6 Min Density Smallest W(int k): Given k, this returns the smallest w that is a valid value
for a minimal density RAID 6 code (Liberation, Blaum-Roth, or Liber8tion). This may return a value
>32, which cannot be used to encode or decode in Jerasure. If no valid w exists, -1 is returned.

• int Gen Evenodd Smallest W(int k, int m): Given k and m, this returns the smallest legal w for
a generalized EVENODD algorithm. For m=2, this returns the smallest w≥k-1 where w+1 is prime.
For m∈(4,5,6,7,8), this returns the smallest valid value of w listed in Table I of [BBV]. This may return
a value >32, which cannot be used to encode or decode in Jerasure. If no valid w exists, -1 is returned.
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• JER Gen T *R6 Min Density Generator(int k, int w): This function creates and returns a
JER Gen T object containing a minimal density matrix. The type of minimal density coding matrix,
dependent upon w, is either Blaum-Roth, Liberation, or Liber8tion. Returns NULL on failure.

• int R6 Min Density Generator(int k, int w, JER Gen T &g): This modifies an existing
JER Gen T object, g, to contain a minimal density matrix. A new JER Matrix object is created
if the generator’s matrix is NULL. Otherwise, the existing matrix is resized and transformed appropri-
ately. Any schedules in the generator’s Schedules map are deleted with a call to Delete Schedules().
Returns 0 on success, -1 on failure.

• JER Gen T *Gen Evenodd Generator(int k, int m, int w): Creates and returns a generator
object containing a generalized EVENODD matrix. Returns NULL on failure.

• int Gen Evenodd Generator(int k, int m, int w, JER Gen T &g): Modifies g to be a generator
object containing a generalized EVENODD matrix. Returns 0 on success, -1 on failure.

• JER Gen T *Gen RDP Generator(int k, int m, int w): Creates and returns a generator object
containing a generalized RDP matrix. Returns NULL on failure.

• int Gen RDP Generator(int k, int m, int w, JER Gen T &g): Modifies g to be a generator
object containing a generalized RDP matrix. Returns 0 on success, -1 on failure.

9.2 Example programs

• bitmatrices evenodd 01.cpp: This takes two parameters: k and m. M must be one of the following:
2,4,5,6,7,8. This uses Gen Evenodd Smallest W() to determine the smallest valid value of w that
can be used. As in other examples, PacketSize is 8. It sets up an Evenodd bit-matrix and uses it for
encoding and decoding. It then encodes w*8 bytes by converting the bit-matrix to a dumb schedule.
The dumb schedule is used because that schedule cannot be improved upon. For decoding, smart
scheduling is used as it gives a big savings over dumb scheduling.

UNIX> ./bitmatrices_evenodd_01 5 4

Smallest w is 4

Coding Bit-Matrix:

1000 1000 1000 1000 1000

0100 0100 0100 0100 0100

0010 0010 0010 0010 0010

0001 0001 0001 0001 0001

1000 0001 0011 0110 1100

0100 1001 0010 0101 1010

0010 0101 1010 0100 1001

0001 0011 0110 1100 1000

1000 0011 1100 0001 0110

0100 0010 1010 1001 0101

0010 1010 1001 0101 0100

0001 0110 1000 0011 1100

1000 0110 0001 1100 0011
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0100 0101 1001 1010 0010

0010 0100 0101 1001 1010

0001 1100 0011 1000 0110

Original data:

Data Coding

D0 (up): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000

p2 :2eab49560bb0b8b4 p2 :0000000000000000

p3 :0bd068c93e5d224d p3 :0000000000000000

D1 (up): p0 :436c8d9c3a2adfda C1 (down): p0 :0000000000000000

p1 :1dd8ca796a67c4f1 p1 :0000000000000000

p2 :7742fa2948b62d69 p2 :0000000000000000

p3 :472e195d0681a900 p3 :0000000000000000

D2 (up): p0 :622ebb7e026bccdf C2 (down): p0 :0000000000000000

p1 :204d531e262b5331 p1 :0000000000000000

p2 :7020241c440a0e2a p2 :0000000000000000

p3 :75cb1c4c41f9a5e1 p3 :0000000000000000

D3 (up): p0 :67bc26ff181e279e C3 (down): p0 :0000000000000000

p1 :7172c06f4909e153 p1 :0000000000000000

p2 :09d3bfba685ae502 p2 :0000000000000000

p3 :7e10e8ab0f262618 p3 :0000000000000000

D4 (up): p0 :726b82306469f5c5

p1 :0cead30e206c7b8a

p2 :028a2bec306eac4e

p3 :56e5747a57287c72

Dumb Schedule Encoding Complete: - 800 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :3495922d44168b48

p1 :05542a27169c39e2 p1 :4559a02133b534fb

p2 :2eab49560bb0b8b4 p2 :229003355f38d2bb

p3 :0bd068c93e5d224d p3 :11c0f109212b74c6

D1 (up): p0 :436c8d9c3a2adfda C1 (up): p0 :44e50fe66604c2c3

p1 :1dd8ca796a67c4f1 p1 :0eb51be27c15dfd2

p2 :7742fa2948b62d69 p2 :33af33355b7f7f54

p3 :472e195d0681a900 p3 :0f74981f2735c837

D2 (up): p0 :622ebb7e026bccdf C2 (up): p0 :027f1b5d7573a04d

p1 :204d531e262b5331 p1 :23bb264c7837d000

p2 :7020241c440a0e2a p2 :0ee8621b5cfd9ff8

p3 :75cb1c4c41f9a5e1 p3 :0a26e5c83d9e4a5f

D3 (up): p0 :67bc26ff181e279e C3 (up): p0 :5df0951a5559109e

p1 :7172c06f4909e153 p1 :24a2ec9879c253ff

p2 :09d3bfba685ae502 p2 :0fb8abf5453ad298

p3 :7e10e8ab0f262618 p3 :3953c96163ff62f7

D4 (up): p0 :726b82306469f5c5

p1 :0cead30e206c7b8a

p2 :028a2bec306eac4e

p3 :56e5747a57287c72

Erased 4 random devices:

Data Coding

D0 (up ): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000
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p2 :2eab49560bb0b8b4 p2 :0000000000000000

p3 :0bd068c93e5d224d p3 :0000000000000000

D1 (down): p0 :0000000000000000 C1 (down): p0 :0000000000000000

p1 :0000000000000000 p1 :0000000000000000

p2 :0000000000000000 p2 :0000000000000000

p3 :0000000000000000 p3 :0000000000000000

D2 (up ): p0 :622ebb7e026bccdf C2 (up ): p0 :027f1b5d7573a04d

p1 :204d531e262b5331 p1 :23bb264c7837d000

p2 :7020241c440a0e2a p2 :0ee8621b5cfd9ff8

p3 :75cb1c4c41f9a5e1 p3 :0a26e5c83d9e4a5f

D3 (up ): p0 :67bc26ff181e279e C3 (up ): p0 :5df0951a5559109e

p1 :7172c06f4909e153 p1 :24a2ec9879c253ff

p2 :09d3bfba685ae502 p2 :0fb8abf5453ad298

p3 :7e10e8ab0f262618 p3 :3953c96163ff62f7

D4 (down): p0 :0000000000000000

p1 :0000000000000000

p2 :0000000000000000

p3 :0000000000000000

Decode (lazily) with a smart schedule: 880 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :3495922d44168b48

p1 :05542a27169c39e2 p1 :4559a02133b534fb

p2 :2eab49560bb0b8b4 p2 :229003355f38d2bb

p3 :0bd068c93e5d224d p3 :11c0f109212b74c6

D1 (up): p0 :436c8d9c3a2adfda C1 (up): p0 :44e50fe66604c2c3

p1 :1dd8ca796a67c4f1 p1 :0eb51be27c15dfd2

p2 :7742fa2948b62d69 p2 :33af33355b7f7f54

p3 :472e195d0681a900 p3 :0f74981f2735c837

D2 (up): p0 :622ebb7e026bccdf C2 (up): p0 :027f1b5d7573a04d

p1 :204d531e262b5331 p1 :23bb264c7837d000

p2 :7020241c440a0e2a p2 :0ee8621b5cfd9ff8

p3 :75cb1c4c41f9a5e1 p3 :0a26e5c83d9e4a5f

D3 (up): p0 :67bc26ff181e279e C3 (up): p0 :5df0951a5559109e

p1 :7172c06f4909e153 p1 :24a2ec9879c253ff

p2 :09d3bfba685ae502 p2 :0fb8abf5453ad298

p3 :7e10e8ab0f262618 p3 :3953c96163ff62f7

D4 (up): p0 :726b82306469f5c5

p1 :0cead30e206c7b8a

p2 :028a2bec306eac4e

p3 :56e5747a57287c72

UNIX>

This demonstrates usage of Gen Evenodd Smallest W(), Gen Evenodd Generator(), JER-
Matrix::Print(), JER Gen T::Create Encode Schedule(), JER Slices::Encode(), and JER-
Slices::Decode Schedule Lazy().

• bitmatrices rdp 01.cpp: This takes three parameters: k, m, and w. K must be less than or equal
to w. W+1 must be prime. As in other examples, PacketSize is 8. It sets up an RDP bitmatrix and
converts it to a dumb schedule. The schedule is used to encode w*8 bytes. A dumb schedule is used
because it cannot be improved upon. For decoding, smart scheduling is used as it gives a big savings
over dumb scheduling.

UNIX> ./bitmatrices_rdp_01 4 3 4
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Coding Bit-Matrix:

1000 1000 1000 1000

0100 0100 0100 0100

0010 0010 0010 0010

0001 0001 0001 0001

1100 0100 0101 0110

0110 1010 0010 0011

0011 0101 1001 0001

0001 0010 0100 1000

1010 0011 0110 0010

0101 0001 0011 1001

0010 1000 0001 0100

1001 1100 1000 1010

Original data:

Data Coding

D0 (up): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000

p2 :2eab49560bb0b8b4 p2 :0000000000000000

p3 :0bd068c93e5d224d p3 :0000000000000000

D1 (up): p0 :436c8d9c3a2adfda C1 (down): p0 :0000000000000000

p1 :1dd8ca796a67c4f1 p1 :0000000000000000

p2 :7742fa2948b62d69 p2 :0000000000000000

p3 :472e195d0681a900 p3 :0000000000000000

D2 (up): p0 :622ebb7e026bccdf C2 (down): p0 :0000000000000000

p1 :204d531e262b5331 p1 :0000000000000000

p2 :7020241c440a0e2a p2 :0000000000000000

p3 :75cb1c4c41f9a5e1 p3 :0000000000000000

D3 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

p3 :7e10e8ab0f262618

Dumb Schedule Encoding Complete: - 432 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :46fe101d207f7e8d

p1 :05542a27169c39e2 p1 :49b3732f13d94f71

p2 :2eab49560bb0b8b4 p2 :201a28d96f567ef5

p3 :0bd068c93e5d224d p3 :47258573760308b4

D1 (up): p0 :436c8d9c3a2adfda C1 (up): p0 :35abd0d93a5a4584

p1 :1dd8ca796a67c4f1 p1 :183267c94cc6bed5

p2 :7742fa2948b62d69 p2 :1678bd2215bfb82e

p3 :472e195d0681a900 p3 :3b63e70148de7b8b

D2 (up): p0 :622ebb7e026bccdf C2 (up): p0 :4779629a4fdcced2

p1 :204d531e262b5331 p1 :55edadb73c8b18e2

p2 :7020241c440a0e2a p2 :697e18e9396a23dc

p3 :75cb1c4c41f9a5e1 p3 :59250d171c1f7d33

D3 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

p3 :7e10e8ab0f262618
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Erased 3 random devices:

Data Coding

D0 (down): p0 :0000000000000000 C0 (up): p0 :46fe101d207f7e8d

p1 :0000000000000000 p1 :49b3732f13d94f71

p2 :0000000000000000 p2 :201a28d96f567ef5

p3 :0000000000000000 p3 :47258573760308b4

D1 (down): p0 :0000000000000000 C1 (up): p0 :35abd0d93a5a4584

p1 :0000000000000000 p1 :183267c94cc6bed5

p2 :0000000000000000 p2 :1678bd2215bfb82e

p3 :0000000000000000 p3 :3b63e70148de7b8b

D2 (up ): p0 :622ebb7e026bccdf C2 (up): p0 :4779629a4fdcced2

p1 :204d531e262b5331 p1 :55edadb73c8b18e2

p2 :7020241c440a0e2a p2 :697e18e9396a23dc

p3 :75cb1c4c41f9a5e1 p3 :59250d171c1f7d33

D3 (down): p0 :0000000000000000

p1 :0000000000000000

p2 :0000000000000000

p3 :0000000000000000

Decode (lazily) with a smart schedule: 504 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :46fe101d207f7e8d

p1 :05542a27169c39e2 p1 :49b3732f13d94f71

p2 :2eab49560bb0b8b4 p2 :201a28d96f567ef5

p3 :0bd068c93e5d224d p3 :47258573760308b4

D1 (up): p0 :436c8d9c3a2adfda C1 (up): p0 :35abd0d93a5a4584

p1 :1dd8ca796a67c4f1 p1 :183267c94cc6bed5

p2 :7742fa2948b62d69 p2 :1678bd2215bfb82e

p3 :472e195d0681a900 p3 :3b63e70148de7b8b

D2 (up): p0 :622ebb7e026bccdf C2 (up): p0 :4779629a4fdcced2

p1 :204d531e262b5331 p1 :55edadb73c8b18e2

p2 :7020241c440a0e2a p2 :697e18e9396a23dc

p3 :75cb1c4c41f9a5e1 p3 :59250d171c1f7d33

D3 (up): p0 :67bc26ff181e279e

p1 :7172c06f4909e153

p2 :09d3bfba685ae502

p3 :7e10e8ab0f262618

UNIX>

This demonstrates usage of Gen RDP Generator(), JER Matrix::Print(), JER Gen T::Create-
Encode Schedule(), JER Slices::Encode(), and JER Slices::Decode Schedule Lazy().

• bitmatrices min den r6 01.cpp: This takes one parameter (k). R6 Min Density Smallest W()
is used to determine the smallest value of W that can be use with the given k. As in other examples,
PacketSize is 8, and w*8 bytes are encoded and decoded. A minimal density bitmatrix is created. The
specific type of coding matrix depends on w. If w+1 is prime and k≤w, a Blaum-Roth coding matrix is
used. If w=8 and k≤w, a Liber8tion coding matrix is used. If w is prime and k≤w, a Liberation coding
matrix is used. This example encodes by converting the bitmatrix to a dumb schedule. The dumb
schedule is used because that schedule cannot be improved upon. For decoding, smart scheduling is
used as it gives a big savings over dumb scheduling.
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UNIX> ./bitmatrices_min_den_r6_01 3

When K is 3, the smallest valid value of W is 3.

Liberation coding

Coding Bit-Matrix:

100 100 100

010 010 010

001 001 001

100 010 001

010 011 100

001 100 110

Original data:

Data Coding

D0 (up): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000

p2 :2eab49560bb0b8b4 p2 :0000000000000000

D1 (up): p0 :0bd068c93e5d224d C1 (down): p0 :0000000000000000

p1 :436c8d9c3a2adfda p1 :0000000000000000

p2 :1dd8ca796a67c4f1 p2 :0000000000000000

D2 (up): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

Dumb Schedule Encoding Complete: - 112 XOR’d bytes

Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :7c9292e076cb4532

p1 :05542a27169c39e2 p1 :0116bee62a374f38

p2 :2eab49560bb0b8b4 p2 :515d385163bcb09a

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :214236e238615913

p1 :436c8d9c3a2adfda p1 :2ca297eb0e670fa0

p2 :1dd8ca796a67c4f1 p2 :1517c2eb7bda1e90

D2 (up): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

Erased 2 random devices:

Data Coding

D0 (up ): p0 :0000000000204a16 C0 (down): p0 :0000000000000000

p1 :05542a27169c39e2 p1 :0000000000000000

p2 :2eab49560bb0b8b4 p2 :0000000000000000

D1 (up ): p0 :0bd068c93e5d224d C1 (up ): p0 :214236e238615913

p1 :436c8d9c3a2adfda p1 :2ca297eb0e670fa0

p2 :1dd8ca796a67c4f1 p2 :1517c2eb7bda1e90

D2 (down): p0 :0000000000000000

p1 :0000000000000000

p2 :0000000000000000

Decode (lazily) with a smart schedule: 112 XOR’d bytes
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Data Coding

D0 (up): p0 :0000000000204a16 C0 (up): p0 :7c9292e076cb4532

p1 :05542a27169c39e2 p1 :0116bee62a374f38

p2 :2eab49560bb0b8b4 p2 :515d385163bcb09a

D1 (up): p0 :0bd068c93e5d224d C1 (up): p0 :214236e238615913

p1 :436c8d9c3a2adfda p1 :2ca297eb0e670fa0

p2 :1dd8ca796a67c4f1 p2 :1517c2eb7bda1e90

D2 (up): p0 :7742fa2948b62d69

p1 :472e195d0681a900

p2 :622ebb7e026bccdf

UNIX>

This demonstrates usage of R6 Min Density Smallest W, R6 Min Density Generator(), JER-
Matrix::Print(), JER Gen T::Create Encode Schedule(), JER Slices::Encode(), and JER-
Slices::Decode Schedule Lazy().

10 Example Application 1: Encoder and Decoder

The programs encoder and decoder are used to encode and decode a single file. When the file is encoded,
it is split into N new files. K of these new files represent data slices, and M represent coding slices. The
decoder can reconstruct the original file if K or more of the new files are not deleted.

10.1 Encoder - encoder.cpp

This program is used to encode a file using any of the available methods in Jerasure. It takes seven
parameters:

• inputfile or negative number S: either the file to be encoded or a negative number S indicating that
a random file of size −S should be used rather than an existing file

• K: number of data files

• M: number of coding files

• coding technique: must be one of the following:

– no coding

– reed sol van: calls RS Classic Generator()

– reed sol r6 op: calls RS R6 Generator()

– cauchy orig: calls CRS Generator(), CRS Convert To Bitmatrix(), and JER Gen T::Create -
Encode Schedule(smart = true)

– cauchy good: calls CRS Good Generator Bitmatrix() and JER Gen T::Create Encode -
Schedule(smart = true)

– r6 min density: calls R6 Min Density Generator() and JER Gen T::Create Encode -
Schedule(smart = true)

– gen rdp: calls Gen RDP Generator()
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– gen evenodd: calls Gen Evenodd Generator()

• W: word size

• (packetsize): For non-bitmatrix based encoding methods, this argument is ignored and set equal to
the size of one slice. Therefore, for non-bitmatrix based coding methods, PacketsPerSlice is one. For
bitmatrix-based coding methods, this must be a multiple of 8.

• (buffersize): This is the approximate size of data (in bytes) to be read in at a time. It is adjusted to
be a multiple of (K * W * packetsize). Buffersize is an optional parameter. If it is not given, or it
is set to 0, the entire file is read in at once.

Encoder reads in inputfile (or creates random data), splits the file into K blocks, and encodes the file into
M blocks. It also creates a file containing meta-data to be used for decoding purposes. It writes all of these
files into a directory named Coding. The output of this program is the rate of encoding and the total rate
of the program; both are given in MB/sec.

UNIX> ls -l Movie.wmv

-rwxr-xr-x 1 plank plank 55211097 Aug 14 10:52 Movie.wmv

UNIX> encoder Movie.wmv 6 2 r6_min_density 7 1024 500000

Encoding (MB/sec): 1405.3442614500

En_Total (MB/sec): 5.8234765527

UNIX> ls -l Coding

total 143816

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k1.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k2.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m1.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv

-rw-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt

UNIX> echo "" | awk ’{ print 9203712*6 }’

55222272

UNIX>

In the above example a 52.7 MB movie file is broken into six data and two coding blocks using Liberation
codes with W= 7 and packetsize = 1K. A buffer of 500000 bytes is specified but encoder modifies the
buffersize so that it is a multiple of (K * W * packetsize).

The new directory, Coding, contains the six files Movie k1.wmv through Movie k6.wmv (which are
parts of the original file) plus the two encoded files Movie m1.wmv and Movie m2.wmv. Note that the
file sizes are multiples of 7 and 1024 as well – the original file was padded with zeros so that it would encode
properly. The metadata file, Movie meta.txt contains all information relevant to decoder.

10.2 Decoder - decoder.cpp

This program is used in conjunction with encoder to decode any files remaining after erasures and recon-
struct the original file. The only parameter for decoder is inputfile, the original file that was encoded.
This file does not have to exist; the file name is needed only to find files created by encoder, which should
be in the Coding directory.
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After some number of erasures, the program locates the surviving files from encoder and recreates the
original file if at least K of the files still exist. The rate of decoding and the total rate of running the program
are given as output.

Continuing the previous example, suppose that Movie k2.wmv and Movie m1.wmv are erased.

UNIX> rm Coding/Movie_k1.wmv Coding/Movie_k2.wmv

UNIX> mv Movie.wmv Old-Movie.wmv

UNIX> decoder Movie.wmv

Decoding (MB/sec): 1167.8230894030

De_Total (MB/sec): 16.0071713224

UNIX> ls -l Coding

total 215704

-rw-r--r-- 1 plank plank 55211097 Aug 14 11:02 Movie_decoded.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m1.wmv

-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv

-rw-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt

UNIX> diff Coding/Movie_decoded.wmv Old-Movie.wmv

UNIX>

This reads in all of the remaining files and creates Movie decoded.wmv which, as shown by the diff
command, is identical to the original Movie.wmv. Note that decoder does not recreate the lost data files
– just the original.

10.3 Judicious selection of buffer and packet sizes

In our tests, the buffer and packet sizes have as much impact on performance as the code used. Initial
performance results are in [SP08]; however these will be fleshed out more thoroughly. To give a compelling
example, look at the following coding times for a randomly created 256M file on a MacBook Pro (2.16 GHz
processor, 32KB L1 cache, 2MB L2 cache):

UNIX> encoder -268435456 6 2 r6_min_density 7 1024 50000000

Encoding (MB/sec): 172.6522847357

En_Total (MB/sec): 141.8509585895

UNIX> encoder -268435456 6 2 r6_min_density 7 1024 5000000

Encoding (MB/sec): 1066.8065148470

En_Total (MB/sec): 526.1761192874

UNIX> encoder -268435456 6 2 r6_min_density 7 10240 5000000

Encoding (MB/sec): 1084.6304288755

En_Total (MB/sec): 555.2568545979

UNIX> encoder -268435456 6 2 r6_min_density 7 102400 5000000

Encoding (MB/sec): 943.4553565388

En_Total (MB/sec): 525.2790538399

UNIX>

When using these routines, one should pay attention to packet and buffer sizes.
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11 Example Application 2: Personal File Archiving

The personal file archiving example is composed of two separate programs. First, the personal archiving
program takes a folder of files as input, and creates a coding file, pc. The original folder of files and the
coding file can then be stored for later use. The second program, personal retrieval restores the original
files by fixing data corruptions. This is only possible when M, or less, blocks have failed. The following
sections detail the usage and behavior of these two programs.

11.1 Personal archiving - personal archiving.cpp

This program is used to create an archive of files. It takes the following arguments:

• M: number of coding blocks to create

• W: word size for classic Reed Solomon coding

• blocksize: size of each block in bytes

• dir: name of directory containing files to archive

• pc: name of the output file containing coding data

Personal archiving creates a temporary tar file of the directory dir. The tar file contains the original
file data and meta-data such as file modification times. All of the data in the tar file is split into blocks
of size blocksize. For each block of file data, the program encodes M coding blocks. The program holds
(M+1) blocks of size blocksize in memory. All encoding is performed with a classic Reed Solomon generator
matrix. The coding data is then written to the file pc. Pc also contains a checksum for each block. This
checksum is used by the personal retrieval program to determine which blocks are corrupt.

For this demonstration, a folder containing 3 files of various sizes is archived.

UNIX> ls -lh my_files/

total 6.0M

-rwxrwxrwx 1 root root 1.0M 2011-07-31 15:08 rand_1MB

-rwxrwxrwx 1 root root 2.0M 2011-07-31 15:09 rand_2MB

-rwxrwxrwx 1 root root 3.0M 2011-07-31 15:09 rand_3MB

UNIX> ./personal_archiving

usage: ./personal_archiving m w blocksize dir pc

UNIX> ./personal_archiving 10 8 1048576 my_files pc

Tar’ing the input folder

Listing tar file’s contents (note: All files are zero-padded to a multiple of 512 bytes.

Each file also contains 512 extra bytes of meta-data.)

my_files/ Original size: 0 Size in .tar: 512

my_files/rand_1MB Original size: 1048576 Size in .tar: 1049088

my_files/rand_2MB Original size: 2097152 Size in .tar: 2097664

my_files/rand_3MB Original size: 3145728 Size in .tar: 3146240

Total size of the .tar file: 6293504 bytes

Given a blocksize of 1048576 bytes, k=10

Creating generator matrix...
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Encoding...

File 1/4: my_files

File 2/4: my_files/rand_1MB

File 3/4: my_files/rand_2MB

File 4/4: my_files/rand_3MB

Archiving complete

UNIX> ls -l pc

-rwxrwxrwx 1 root root 10485968 2011-07-31 15:13 pc

Given a blocksize of 1MB, the tar file of the my files folder was split into 10 blocks (K = 10). As the
blocksize is increased, the number of data blocks, K, decreases.

The resulting pc file contains meta-data such as M and W, 10 coding blocks, and 20 checksums. The
original my files folder and contents were not modified.

11.2 Personal retrieval - personal retrieval.cpp

Personal retrieval accepts two arguments:

• dir: name of directory containing files previously archived

• pc: name of the input file containing coding data

Meta-data from pc is read to determine the arguments used to archive dir. Personal retrieval creates
a temporary tar file of the dir folder. This tar file is split into K blocks, and M blocks of coding data are
read from pc. For each data and coding block read in, a checksum is computed. These new checksums are
compared to those stored in pc. This process determines which blocks are corrupt. If M or fewer blocks are
corrupt, the failed data blocks are decoded.

A maximum of (M + 1) blocks of size blocksize are held in memory during decoding. Please note
that personal retrieval does not fix corrupt coding blocks. Additionally, blocks are marked corrupt if
the headers in the temporary archiving and retrieval tar files differ. Therefore, decoding occurs if a file’s
size or modification time changes, because this information is stored in the tar’s header. Finally, per-
sonal retrieval does not tolerate deleted files.

The archived state of the my files directory is shown below:

UNIX> ls -lh my_files/

total 6.0M

-rwxrwxrwx 1 root root 1.0M 2011-07-31 15:08 rand_1MB

-rwxrwxrwx 1 root root 2.0M 2011-07-31 15:09 rand_2MB

-rwxrwxrwx 1 root root 3.0M 2011-07-31 15:09 rand_3MB

ls -lh | grep my_files

drwxrwxrwx 1 root root 0 2011-07-31 15:09 my_files

Personal retrieval will not perform decoding if all of the blocks are unchanged.

UNIX> ./personal_retrieval my_files pc

Retrieved coding information:

k=10

m=10
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w=8

method=reed-sol

blocksize=1048576

Tar’ing the input folder

Listing tar file’s contents (note: All files are zero-padded to a multiple of 512 bytes.

Each file also contains 512 extra bytes of meta-data.)

my_files/ Original size: 0 Size in .tar: 512

my_files/rand_1MB Original size: 1048576 Size in .tar: 1049088

my_files/rand_2MB Original size: 2097152 Size in .tar: 2097664

my_files/rand_3MB Original size: 3145728 Size in .tar: 3146240

Creating the generator matrix

Comparing data checksums

Comparing coding checksums

Number of corrupt data blocks: 0

Number of corrupt coding blocks: 0

No corrupt blocks to decode

A data block failure is generated by touching a single file in my files. A block fails because a file’s
modification time changes. When personal retrieval creates the tar file of my files, the header data for
one of the files will create a new, unmatched, checksum.

UNIX> touch my_files/rand_1MB

UNIX> ls -lh my_files/

total 6.0M

-rwxrwxrwx 1 root root 1.0M 2011-07-31 16:13 rand_1MB

-rwxrwxrwx 1 root root 2.0M 2011-07-31 15:09 rand_2MB

-rwxrwxrwx 1 root root 3.0M 2011-07-31 15:09 rand_3MB

UNIX> ./personal_retrieval my_files/ pc

Retrieved coding information:

k=10

m=10

w=8

method=reed-sol

blocksize=1048576

Tar’ing the input folder

Listing tar file’s contents (note: All fi

to a multiple of 512 bytes. Each file al

ra bytes of meta-data.)

my_files/ Original size:

.tar: 512

my_files/rand_1MB Original size:

.tar: 1049088

my_files/rand_2MB Original size:

.tar: 2097664

my_files/rand_3MB Original size:

.tar: 3146240

Creating generator matrix
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Comparing data checksums

Comparing coding checksums

Number of corrupt data blocks: 1

Number of corrupt coding blocks: 0

my_files/

my_files/rand_1MB

my_files/rand_2MB

my_files/rand_3MB

UNIX> ls -lh my_files/

total 6.0M

-rwxrwxrwx 1 root root 1.0M 2011-07-31 15:08 rand_1MB

-rwxrwxrwx 1 root root 2.0M 2011-07-31 15:09 rand_2MB

-rwxrwxrwx 1 root root 3.0M 2011-07-31 15:09 rand_3MB

After decoding, the rand 1MB’s modification time is restored to its archived state.

12 Example Application 3: RAID

The raid program is used to demonstrate how Jerasure may be used in order to manage a RAID system. All
encoding and decoding uses a classic Reed Solomon generator matrix. The program reads K files of identical
size and writes the encoding of the original data to N files. Next, M partial failures and M - 2 complete disk
failures are created. Finally, the program attempts to recover from these. Because, this program generates
2 * ( M - 1 ) failures, there exist scenarios in which some data loss occurs. However, in most cases, this
program demonstrates recovery from both partial and disk failures, even when more than M failures are
present.

12.1 raid.cpp

This example program requires five parameters. The following lists and describes these parameters:

• N: total number of data and coding files the program will handle. N lets you indirectly specify the
number of coding files, M, that will be created (M = N - K).

• K: number of data files existing in the raid dir folder

• W: word size

• packetsize: Each slice is setup to hold W packets of packetsize bytes.

• raid dir: The name of an existing directory. This directory should contain K files. All files should be
the same size, and named file0, file1, ... file(K-1).

The following demonstrates usage of the raid program:
First, a folder for holding the data files is created.

UNIX> mkdir raid_test

Five files containing 1 MB of random data are created inside the new folder. Please note that the naming
convention of file0, file1, ... file(K-1) must be followed.
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UNIX> dd if=/dev/urandom of=./raid_test/file0 bs=1M count=1

UNIX> dd if=/dev/urandom of=./raid_test/file1 bs=1M count=1

UNIX> dd if=/dev/urandom of=./raid_test/file2 bs=1M count=1

UNIX> dd if=/dev/urandom of=./raid_test/file3 bs=1M count=1

UNIX> dd if=/dev/urandom of=./raid_test/file4 bs=1M count=1

UNIX> ls -lh raid_test

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:42 file0

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:42 file1

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:42 file2

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:42 file3

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:42 file4

For this example, a copy of the original files is made. The original files will be used to confirm that
decoding worked.

UNIX> cp -r raid_test raid_test_orig

Next, the raid simulation is run.

UNIX> ./raid

usage: ./raid n k w packetsize raid_dir

UNIX> ./raid 10 5 8 1024 raid_test

Drive files opened.

Performing encoding.

Encoding successful.

Generating 5 partial failures.

Drive 4 failed at 838080 for 38986 bytes

Drive 1 failed at 333008 for 181714 bytes

Drive 5 failed at 244654 for 340766 bytes

Drive 0 failed at 526408 for 393259 bytes

Drive 1 failed at 980060 for 18706 bytes

Failing drive 3.

Failing drive 4.

Failing drive 0.

Performing partial failure recovery and decoding.

Files successfully decoded.

After the simulation runs, the raid directory contains a total of N files. M new files contain the coding
data.

UNIX> ls -lh raid_test

total 10M

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file0

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file1

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file2

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file3

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file4

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file5

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file6

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file7

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file8

-rwxrwxrwx 1 root root 1.0M 2011-07-31 12:52 file9

If decoding corrected the failures, the first K files should be the original data. For this demonstration,
the diff command is used to confirm that the original data was recovered.
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UNIX> diff raid_test/file0 raid_test_orig/file0

UNIX> diff raid_test/file1 raid_test_orig/file1

UNIX> diff raid_test/file2 raid_test_orig/file2

UNIX> diff raid_test/file3 raid_test_orig/file3

UNIX> diff raid_test/file4 raid_test_orig/file4
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