
Threading Methodology: Principles and
Practices
Version 2.0

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 2 of 64

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH
INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Intel products are not intended for use in medical, life saving, life sustaining
applications.
Intel may make changes to specifications and product descriptions at any time,
without notice.
Intel, the Intel logo, Pentium, Intel Xeon and VTune are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002, 2003, 2004 Intel Corporation

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 3 of 64

Contents
Abstract 5
About this Document 6
1. Introduction 7
2. Intel® Threading Tools 9

VTune™ Performance Analyzer ... 9
Intel® C/C++ and Intel® Fortran Compilers 9

OpenMP Support.. 10
Auto-Parallelization (Preview Feature) 10

Intel® Thread Checker .. 10
Thread Profiler .. 10

OpenMP Thread Profiler... 11
Win32* Thread Profiler ... 11

Intel® Performance Libraries .. 12
3. Generic Development Cycle 13

Analysis Phase.. 13
Design Phase.. 13
Implementation Phase .. 14
Debug Phase .. 14
Testing and Tuning Phase .. 14

4. Approaches to Parallel Programming 15
Task-Parallel Applications... 15
Data-Parallel Applications ... 15
Threading Methods ... 16

Automatic Parallelization .. 16
Compiler-Directed Parallelism with OpenMP* 17
Expressing Concurrency with Thread Libraries.............. 18

5. Efficient Threading Practices 20
Amdahl’s Law ... 20
Granularity .. 21
Thread Creation.. 21
Implicit and Explicit Synchronization 22

6. Methodology for Threading Applications 26
Designing a Threaded Application 26

Video Editing Example ... 26
Data Decomposition ... 27
Functional Decomposition .. 31
Performance Upper Bound... 32

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 4 of 64

Serial Application to Threaded Application 33
Analysis .. 33
Design .. 34
Decomposition Types ... 35
Data Restructuring.. 37
Implementation ... 39

Functional Decomposition... 40
Debugging & Testing .. 43
Evaluating Third Party DLLs... 45
Tuning for Performance.. 46

7. Architecture-Specific Tuning for Hyper-Threading Technology
 58

Designing .. 58
Implementing... 59
Debugging... 59
Tuning ... 60
Validation .. 60
Known Pitfalls.. 61

Spin-waits ... 61
Write-Combining Store Buffers....................................... 62
64K Alias Conflicts.. 62
Effective Cache Locality ... 63

8. Using the VTune™ Performance Analyzer to detect Hyper-
Threading Technology Issues 64

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 5 of 64

Abstract
Threading serial applications has become more common with the advent of operating
systems and hardware architectures that support multiple processors. In order to
realize the performance potential of systems with Hyper-Threading Technology
enabled, applications must be threaded for performance to take maximum advantage
of the new architectures. However, the process of threading an application can be
difficult without the right tools. This document introduces threading concepts and
provides a methodology for threading serial applications and tuning threaded
applications for performance using the Intel® Threading Tools. Emphasis is placed on
writing correct and efficient threaded applications. Discussion includes analysis of
common coding pitfalls and their solutions. Sample implementations are also provided
to highlight some of the recommended paradigms.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 6 of 64

About this Document

This document is organized by chapter as follows:
1. Introduction provides an overview of the threading methodology.
2. Intel® Threading Tools introduces the tools Intel provides to help you create,

analyze, check, and improve the performance of your multi-threaded application.
3. Generic Development Cycle presents an overview of a generic model you can use

to design, create, and optimize a multi-threaded application. It highlights the use
of the different threading tools associated with each phase of the development
cycle.

4. Approaches to Parallel Programming presents parallel computing theory by
discussing various parallel models and the means to achieve these by exploring
various threading techniques.

5. Efficient Threading Practices describes best practices for threading an application.
6. Methodology for Threading Applications returns to the generic development cycle

in greater detail, providing examples and specific guidelines for successfully
threading an application.

7. Architecture-Specific Tuning for Technology discusses architecture-level
specific considerations for improving the performance of your threaded
application.

8. Using the VTune Performance Analyzer to detect Hyper-Threading Technology
Issues explains how to use different features of the VTune analyzer to your
advantage.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 7 of 64

1. Introduction

Today’s operating systems strive to make the most efficient use of a computer’s
resources. Most of this efficiency is gained by sharing machine resources among
several processes (multi-processing). Such “large-grain” resource sharing is enabled
by operating systems without any instructions from applications or processes. All
these processes can potentially execute concurrently, with the CPU (or CPUs)
multiplexed among them. Newer operating systems provide mechanisms that enable
applications to control and share machine resources at a finer grain, that is, at the
threads level. Just as multiprocessing OSes can perform more than one task
concurrently by running more than a single process; a process can perform more than
one task by running more than a single thread. This document discusses how to use
threads to improve your application’s performance, responsiveness, and throughput. It
also presents a methodology for threading a serial application.
As with most programming techniques, the primary goal of threading is to help you
take the best advantage of the system resources. Concurrency increases the complexity
of the design, testing and maintenance of the code while offering increased throughput
on single or multiprocessor machines. Threading represents a major step forward from
the time when concurrency was implemented using inter-process communication.
Overhead from inter-process communication can have a negative impact on
performance. By threading an application some of this complexity can be reduced,
especially with respect to inter-process communication. In addition, threading retains
the ability to scale the level of parallelism with an incremental increase in system
resource requirements. However, threading an application may introduce errors that
are hard to detect and reproduce. A majority of the effort in threading applications
falls in the design, implementation and the debug phases of the development cycle.
Threading effort depends on your experience in threading applications and your
knowledge of the application that is being threaded.
The Intel® Threading Tools are designed to help all developers, from novice to
expert, by providing tools that target various stages in the development cycle. This
document discusses the Intel Threading Tools and their role in development cycles. It
also presents sections on parallel computing theory, threading principles, and efficient
threading practices before stepping through the proposed methodology.
The objective of multiprocessing is to have some process running on the CPU at all
times in order to maximize utilization. Each process is given a time-slice during which
time it executes. Creation of a process involves the creation of an address space, the
application’s image in memory - this includes a code section, a data section and a
stack. Parallel programming using processes requires the creation of two or more
processes and an inter-process communication mechanism to coordinate the parallel
work during their concurrent execution.
Threads are tasks that run independently of one another within the context of a
process. A thread shares code and data with the parent process but has its own unique
stack and architectural state that includes the instruction pointer. Threads operate in
the same manner as processes and like processes, share the CPU. Each thread is a

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 8 of 64

different stream of control that can execute its instructions independently, enabling a
multithreaded process to perform numerous tasks concurrently. The main benefits of
threading include the following:
• Performance gains from multiprocessing hardware (parallelism)
• Increased application throughput
• Increased application responsiveness
• More efficient use of system resources
• Well structured code
In some cases threading an existing serial application increases the complexity of the
application. Sharing resources such as global data can introduce common
programming errors such as storage conflicts and other race conditions. Debugging
such problems is difficult as they are often non-deterministic and debugging probes
such as print statements can mask such errors.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 9 of 64

2. Intel® Threading Tools

Intel® Threading Tools enable you to rapidly multithread your single-threaded
applications, assist in locating errors and facilitate increased application performance
on Intel processors by enabling architectural features. This section describes the
overall features and capabilities of the threading tools.

VTune™ Performance Analyzer
The VTune™ Performance Environment is a performance framework that includes the
VTune Performance Analyzer. The VTune analyzer enables you to tune an application
for optimal performance on Intel architectures. The key features of the VTune
analyzer component include the following:
• Time and event based sampling offer a non-intrusive means of collecting profile

information of your application with minimal overhead. No instrumentation or
recompilation is required.

• Hotspot analysis enables you to identify regions in your application that take the
most amount of time and help concentrate the tuning efforts on regions with the
greatest potential for performance improvement.

• Call graph profiling presents a pictorial view of program flow. It also helps you
identify critical functions and call sequences that are time consuming.

• Integrated source view provides detailed sampling information for each source
code line.

• The Intel® Tuning Assistant provides valuable advice on tuning your system
resources and application performance. It analyzes the data collected by the
VTune Performance Analyzer, identifies performance issues, and provides tuning
advice, using its multiple knowledge-bases.

For more information, see the Performance Analyzers website at:
http://developer.intel.com/software/products/vtune/ .

Intel® C/C++ and Intel® Fortran Compilers
Intel compilers help make your software run at top speeds on Intel 32-bit processors,
including the new Intel Pentium® M processor based on Intel Centrino™ mobile
technology, and 64-bit Intel Itanium® and Itanium 2 processors. Optimizations
include support for Streaming SIMD Extensions 2 (SSE2) in the Intel Pentium® 4
processor and software pipelining in the Intel Itanium® and Itanium 2 processors.
Inter-procedural optimization (IPO) and profile-guided optimization (PGO) can
provide greater application performance. Intel compilers support multi-threaded code
development and optimization through the Auto-Parallelism feature and OpenMP* 2.0
support.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 10 of 64

OpenMP Support
OpenMP is the industry standard for portable multithreaded application development,
and is effective at fine grain (loop level) and large grain (function level) threading.
The Intel Compilers support OpenMP API version 2.0 and perform code
transformation for shared memory parallel programming. The Intel compilers support
multi-threaded application development and debugging, with support for OpenMP 2.0.

Auto-Parallelization (Preview Feature)
The Intel C++ Compiler 7.1 includes an Auto-parallelization feature for automatic
threading of loops. This feature provides developers with an easy way to take
advantage of parallelism to improve application performance on multiprocessor
systems. This option detects parallel loops capable of being executed safely in parallel
and automatically generates multithreaded code for these loops. Automatic
parallelization relieves you from having to deal with the low-level details of iteration
partitioning, data sharing, thread scheduling and synchronizations. It also provides the
benefit of the performance available from multiprocessor systems, and systems that
support Hyper-Threading technology.
For more information, see the Intel compilers Web site at
http://developer.intel.com/software/products/compilers/ .

Intel® Thread Checker
The Intel® Thread Checker is one of the key components of the threading tools. It is a
plug-in to the VTune Performance Environment that helps you locate hard-to-catch
errors and potential errors in your threaded application. Use the Thread Checker to
detect the following types of errors:
• Deadlocks and potential deadlocks
• Data races
• Thread stalls
• API violations
• Failing library routines
Thread Checker pinpoints errors to their actual line in the source code. The details
provided for each error are dependent on the type of instrumentation that is performed
on the application. The Thread Checker collects data using your choice of source or
binary instrumentation, or a combination of both. Source instrumentation is done by
making source code changes before (or as) your code is compiled. Binary
instrumentation is done by alerting the executable files directly to insert data
collection capabilities, without knowledge of the source code.
For more information, see the Threading Tools Web site at:
http://developer.intel.com/software/products/threading/

Thread Profiler
Thread profiler is a plug-in to the VTune Analyzer that helps you identify
performance bottlenecks in your applications that are threaded using OpenMP* and
Win32* API.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 11 of 64

OpenMP Thread Profiler
Building your application with the /Qopenmp_profile compiler flag directs the
compiler to link the application with the instrumented versions of the library.
Applications built with instrumented libraries can be run outside the VTune
Environment to generate the runtime statistics file. The statistics file can then be
viewed with the help of thread profiler within the VTune Analyzer. If the application
is built without the instrumented libraries, the VTune Analyzer substitutes the
OpenMP runtime DLLs with the instrumented version when run within the VTune
environment. However, the application must be built to use the DLL version of the
OpenMP runtime library by using /MD /Qopenmp at compile time.
Thread profiler presents runtime statistics in various views so that you can see the
breakdown of your application’s performance on a per-thread basis and on a per-
OpenMP region basis. The profile is broken down according to time spent in serial
regions, parallel regions, critical sections and various synchronization overheads.
Using this information, you can determine if the threaded application performance is
being affected by excessive overhead, synchronization, or thread imbalance.

Win32* Thread Profiler
Win32 Thread Profiler offers features that are useful in profiling explicitly threaded
software using the Microsoft* Win32 threading API to locate performance bottlenecks
impacting parallel performance. This is achieved by instrumenting the application
binary and inserting calls to statistics gathering functions in the Thread Profiler
library. The data collected is then used to identify performance issues in
multithreaded software:

• Synchronization delays
• Stalled threads
• Time in blocking operations
• System utilization (Over vs. under utilization)

Thread Profiler helps you:

• Understand the threading patterns in multithreaded software
• Understand the performance impact of synchronization
• Compare the performance impact of different synchronization methods, different

numbers of threads, or different algorithms
• Locate synchronization constructs that impact execution time
• Determine the sections of code to optimize for sequential performance and for

threaded performance

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 12 of 64

Intel® Performance Libraries
The Intel® Performance Libraries reduce the cost of development and maintenance by
providing a range of library functions. The Intel Integrated Performance Primitives
library is a cross-platform software library with a variety of multimedia functions to
provide increased performance for audio/video codecs and image/signal processing.
The Intel Math Kernel Library provides linear algebra, Fast Fourier Transform and
vector math functions enabling increased performance for financial, scientific and
engineering software.
The Intel Math Kernel Library (Intel MKL) is composed of highly optimized
mathematical functions for engineering, scientific and financial applications requiring
high performance on Intel® platforms. The functional areas of the library include
linear algebra consisting of LAPACK and BLAS, Fast Fourier Transform (FFT) and
vector transcendental functions (vector math library/VML).
Intel MKL is optimized for the latest features and capabilities of the Intel Pentium 4
processor, Intel Xeon™ processors and Intel Itanium architecture. The Intel MKL is
compatible with Windows and Linux environments. Intel MKL enables you to exploit
many of the advantages of parallelism with none of the work. It provides excellent
scaling on many applications.
For more information, see the Performance Libraries Web site at:
http://developer.intel.com/software/products/perflib/.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 13 of 64

3. Generic Development Cycle
This chapter presents an overview of a generic program development model you can
use to thread your application and improve its performance. You can use appropriate
components of the Intel Threading Tools at each stage of development to improve the
performance of your threaded application. Each stage of the development cycle is
described in greater detail, with examples, in the chapter, Methodology for Threading
Applications.

Analysis Phase
Typically, the analysis stage involves profiling a serial application to determine
regions of the application that can most benefit from threading. Use the VTune
Performance Analyzer to identify critical paths using call-graph analysis and time-
based sampling (TBS) to determine hotspots in the critical path. Once you determine
potential candidates for threading, choose an appropriate threading model. This can be
easily done by first determining the type of parallelism, (data or functional), that
characterizes each threading candidate.

Figure 1: A flowchart depicting the key steps of a generic threading methodology.

Design Phase
During the design phase, you examine the critical regions identified during the
analysis phase to determine the design changes required to accommodate a threading
paradigm. Design changes include making modifications to facilitate the use of
threading models, including:
• data restructuring
• code restructuring
During this phase, you need to address the following questions:
• Which variables must be shared?
• Is the current structure is a good candidate for threading?

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 14 of 64

Implementation Phase
The implementation phase involves converting design elements to actual code by
selecting an appropriate threading model. In addition to its main purpose as a tool for
the debug and testing phases, you can use The Intel Thread Checker in creative ways
to aid in the design and development of threaded applications.
Consider implementing your program using one or more of the following threading
methodologies:
• Use the Intel compilers to automatically parallelize certain loops.
• Use the Thread Checker to locate syntactic or runtime errors and identify

variables that cause errors.
• Specify the parallelism in your application using OpenMP pragmas or directives.
• Explicitly parallelize your program using calls to the Win32 thread API or the

POSIX threads API.

Debug Phase
During the debug phase, you iron out bugs; ensure the correctness of your application,
and meet product requirements.
Use dynamic analysis of your application to uncover issues and support interactive
debugging of problem areas.
Use the Intel Thread Checker during this phase to detect non-deterministic errors such
as data races, deadlocks, and thread stalls.

Testing and Tuning Phase
During testing, you examine the execution performance and the correctness of the
threaded application as follows:
1. Use the Intel Thread Checker to validate the correctness of your threaded

application. It is assumed that the serial run of the application results in correct
values, so any errors can be assumed to be due to threading errors.

2. Compare performance of your threaded application against the serial application’s
performance to estimate the scaling potential Apply parallel-program specific
ideas to increase performance.

The tuning phase increases application performance incrementally where possible.
Note that correct parallel design must be ensured before beginning application
performance tuning.
1. Use Thread Profiler to determine if there are any high level threading related

performance issues.
2. Fix performance issue using a better choice of threading API or by redesign.

Redesign of the application may require a pass through the debug and test phases as
these changes may have introduced threading errors. An iterative cycle of Debug-
>Test->Tuning may be required to eliminate all problems.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 15 of 64

4. Approaches to Parallel Programming
To effectively thread an application, you must choose the most appropriate threading
method. While variations in threading methods may not impact performance, choosing
the wrong threading method increases the amount of time spent modifying, debugging
and tuning a threaded application.
To choose the best threading method, characterize your application in terms of two
models: task-parallel or data-parallel.

Task-Parallel Applications
In task-parallel applications, independent work that is encapsulated in functions is
mapped to threads which execute asynchronously as shown in Figure 2. Thread
libraries such as the Win32* thread API or POSIX* threads are designed to express
task-level concurrency.

Figure 2: A Personal Information Manager (PIM) is a good example of an
application that contains task-level concurrency. When expressing task-level
concurrency, independent functions are mapped to threads as illustrated in the
pseudo-code.

Data-Parallel Applications
Data parallelism implies that the same instructions or operations are applied
repeatedly to different data. This model is shown in Figure 3. Compute-intensive
loops are good candidates for data parallel threading methods.
Typical image processing algorithms that apply a filter to a pixel or group of pixels to
compute a new value for a pixel are a common example of data parallelism. As long
as the pixel operations are independent, the computations to generate new pixel values
can be done in parallel.
Sometimes it is possible for the compiler to automatically express data parallelism.
Or, you can describe the parallelism using a directive syntax called OpenMP*. The
compiler is responsible for converting the directives to threaded code.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 16 of 64

Figure 3: A spell checker is a good example of a data-parallel operation. The same,
independent operation of comparing a word in a file against a dictionary is
performed repeatedly, as shown in the pseudo-code.

Note that both parallel models can exist in different parts of an application. A database
is a good example of an application that exhibits both parallel models. The task of
adding records to the database could be assigned to one thread, sorting to another,
indexing to yet another and a pool of threads could service queries. A database query
applies the same operation to different data, making it a data-parallel task.

Threading Methods
The primary design goals of OpenMP and thread libraries are different. Data parallel
methods such as OpenMP are designed to improve performance through
multiprocessing. Explicit threading methods, though just as capable at improving
parallel performance, are primarily designed to express the natural concurrency that is
present in most applications. In fact, the target platform of many threaded applications
is a uni-processor computer.
There two reasons to use threading: to express concurrency and to improve
performance. Consider these reasons in terms of word processing, which is not
normally considered a performance-driven application. When a large document is
printing, users may want to continue working. Many users would not tolerate a frozen
interface during a long print job. If an application has multiple threads, the operating
system can context switch between them, thus hiding latency. The user perceives the
improved response time from the application as faster performance.
This section describes different types of threading methods.

Automatic Parallelization
Use the -Qparallel option of the Intel compilers to automatically parallelize some
loops. When -Qparallel is enabled, the compiler attempts to identify loops that can
be safely executed in parallel. The following guidelines improve the likelihood that
the compiler will successfully identify a parallel loop:
• Expose the trip count of the loop
• Avoid references to global data or procedure calls in the loop body
• Do not branch out of the loop
Exposing the trip count of the loop does not mean that the trip count of a loop must be
fixed at compile-time. Rather, the compiler must be able to determine whether the trip

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 17 of 64

count varies during execution of the loop. A loop cannot be safely parallelized if the
iteration count varies based on conditions within the loop. Branching from the loop
has a similar effect. Failure to adhere to these recommendations does not
automatically disqualify a loop from parallel execution. For example, calling a pure
function such as a routine with no side-effects does not disrupt parallelism.1 However,
the compiler will err on the side of caution when it cannot guarantee correct parallel
execution. Use the -Qpar_report3 option to get a full report on which loops were
successfully parallelized and the dependencies that prohibit parallelization of others.
See the compiler documentation for more details.

Compiler-Directed Parallelism with OpenMP*
The most advanced auto-parallelizing compilers are not up to the task of parallelizing
hundreds or thousands of lines of code spanning multiple source files. In contrast, if
you understand the underlying algorithm, you may know instinctively that the same
code is free of dependencies and safe to execute in parallel. For this reason, a
directive-based syntax called OpenMP* was developed to enable you to describe
parallelism to the compiler.

Parallel Regions

Master
Thread

Figure 4: OpenMP* is a fork/join method: every parallel region has a clearly defined
beginning and end.

OpenMP* quickly became an industry standard for compiler-based threading after its
introduction in 1997. Before OpenMP, several competing but similar sets of parallel
compiler directives were available. The OpenMP specification unified these syntaxes
and extended their capabilities to handle larger applications.
The OpenMP specifications define a set of Fortran directives and C/C++ preprocessor
pragmas to express data parallelism. OpenMP is a fork/join method for creating and
terminating threads as shown in Figure 4. You must specify the start and end of each
parallel region.
Use the -Qopenmp option to tell the Intel compilers to process OpenMP directives or
pragmas to produce a threaded executable. Otherwise, the OpenMP directives are
ignored. This is a key advantage of OpenMP over other parallel programming
methods. It is incremental and relatively non-invasive. OpenMP can parallelize

1 For this reason, Fortran 95 includes a PURE attribute to clearly identify pure functions to the compiler. It
should also be noted that the Fortran 90/95 array syntax is implicitly parallel.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 18 of 64

specific loops or regions of the program without large-scale code modifications. The
original serial code is left largely intact.

Expressing Concurrency with Thread Libraries
Consider two sample codes that can be used to calculate the value of Pi by numerical
integration:
• Code Sample 1 uses a single OpenMP pragma, leaving the underlying serial code

intact. In this case, the code can still be compiled by a non-OpenMP compiler that
would ignore the pragma.

• Code Sample 2 uses explicit threading using the Pthreads* API, which requires
significant work to perform code restructuring. It requires adding explicit
synchronization in order to guarantee correct results. The code of Code Sample 2
can not be used in environments where Pthreads are not supported.

Code Sample 1: A single OpenMP* pragma is used, leaving the underlying code
intact.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 19 of 64

#include <stdio.h>
#include <pthreads.h>
#define INTERVALS 100000
#define THREADS 4

float global_sum = 0.0;
pthread_mutex_t global_lock =
 PTHREAD_MUTEX_INITIALIZER;

void *pi_calc (void *num);

int main ()
{
 pthread_t tid[THREADS];
 int i, t_num[THREADS];
 for (i = 0; i < THREADS; i++)
 {
 t_num[i] = i;
 pthread_create (&tid[i],
 NULL,
 pi_calc,
 &t_num[i]);
 }

 for (i = 0; i < THREADS; i++)
 pthread_join (tid[i], NULL);

 printf ("Sum = %f\n", global_sum);
}

void *pi_calc (void *num)
{
 int i, myid, start, end;
 float h, x, my_sum = 0.0;

 myid = *(int *)num;
 h = 1.0 / INTERVALS;
 start = (INTERVALS / THREADS) * myid;
 end = start + (INTERVALS / THREADS);

 for (i = start; i < end; i++)
 {
 x = h * ((float)i - 0.5);
 my_sum += f(x);
 }
 pthread_mutex_lock (&global_lock);
 global_sum += my_sum;
 pthread_mutex_unlock (&global_lock);
}

Code Sample 2: In this example, pi is calculated using POSIX* threads, a more
invasive method than the calculation that uses OpenMP*.

The key differences between traditional thread libraries and OpenMP can be
summarized as follows:
• Thread libraries such as Pthreads* or the Win32* thread API have been around

longer and are more widely used than OpenMP.
• Thread libraries are more complex than OpenMP, but also more general. Win32

threads can do anything that OpenMP can do (though not always as easily).
OpenMP cannot do everything that thread libraries can do.

• Since thread libraries are not restricted to a fork/join parallel model, they can
express multiple levels of concurrency.

• Thread libraries provide mechanisms for inter-process communication and
synchronization.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 20 of 64

5. Efficient Threading Practices
This chapter describes essential concepts and recommended algorithms for correctly
threading an application.

Amdahl’s Law
Amdahl's law is a theoretical basis by which the performance of data-parallel
situations can be determined. It provides the necessary theoretical background for the
performance issues discussed in this section. Use Amdahl’s Law shown in Figure 5 to
gauge how sequential operations limit the scalability of a parallel process.

Figure 5: Amdahl’s Law: Break down of total time spent by a process using N
processors. An amount of time, P, is spent in parallel, but it comes with an overhead
cost.

Since we are looking for the theoretical limit of scalability, assume an infinite number
of processors with no parallel overhead. Amdahl’s Law reduces to a simple ratio:

Parallel

Total

T
T

yScalabilit =

If only half of a process is able to take advantage of parallelism, the maximum
possible scalability is two – assuming an infinite number of processors and perfect
efficiency. If only two processors are available, the maximum possible speedup is
1.33, assuming perfect efficiency.
If T is the time needed to execute serially, then if only two processors are available,
the minimum amount of time needed is T/2 (to execute the half of the code which is
not parallel) plus (T/2)/2 to execute the parallel half on two processors, or a total
time of 3*T/4. Dividing T by(3*T/4) results in a 4/3 or 1.33 speedup.
Use Amdahl’s Law to easily assess the potential benefits of parallel processing. For
example, creating multiple threads to process an image should greatly improve
performance on multiprocessor systems. However, file I/O operation is inherently
sequential. If it takes longer to load and save an image than it does to apply an image
filter, creating threads to speed the filter operation may not be worth while. It may
however be worth the effort to run the filter on a separate thread from the file I/O.
Thus, data decomposition may not make sense, but functional decomposition might.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 21 of 64

Granularity
The concept of granularity offers another useful guideline for when and when not to
use parallel processing. With Amdahl’s Law, you determine whether the ratio of
parallel to serial work is sufficient to merit threads. With granularity, you must decide
whether the amount of work per independent task (referred to as grain size) is
sufficient to merit threading. Unlike Amdahl’s Law, defined by an objective equation,
granularity is more subjective.
For example, consider the iterative solutions to differential equations. Each iteration
depends on the previous iteration. Therefore, the iterations are strictly sequential but
the work within an iteration may contain opportunities for parallelism. Consider that
in every iteration, all of the computations are performed in a single function.
A flat profile of such programs can be misleading. It indicates that most of the
compute-time is spent in this function. The natural conclusion is that this function is a
good candidate for threading. However, it is important to determine the approximate
time per iteration. It is possible that this number is less than the system overhead
required to create and maintain the threads, which degrades performance as the
number of threads increases. In this example, the grain-size is too fine to warrant
threads.
Use the call-graph collector of the VTune Performance Analyzer to help you decide
whether to thread a function or its caller.

Thread Creation
To simplify Amdahl’s Law, parallel overhead was ignored. This is, of course, an
unrealistic assumption. Creating a thread under Windows costs roughly the same as
1,000 integer divides. The operating system (OS) must also maintain and schedule
threads. Maintaining a thread state requires system resources. Thread scheduling often
requires context switching. System overhead limits scalability but good algorithm
design can minimize its effects.
With OpenMP it is easy to vary the number of threads for each parallel region but it is
rarely beneficial to have more ready threads than processors. This simply increases
system overhead without providing additional performance.
Explicit threading libraries are more general than the OpenMP fork/join model. Any
thread can create new threads and destroy others. Threads can pop in and out of
existence throughout the life of the program. A threads-on-demand implementation is
explicit and straightforward, much like dynamic memory allocation. Resources are
requested from the operating system as needed. This is often the most direct route to a
threaded application and often provides satisfactory performance. But it can also
generate enough system overheads to limit scalability.
Considering a database example, it is relatively easy to map every transaction such as
adding/deleting records, querying, etc. to a thread and to let the OS handle scheduling.
If transaction volume is light, this implementation could provide adequate efficiency.
However, large volume could easily swamp the system with too many threads.
If transaction volume is heavy, then the number of connections is higher. Instead of
creating a thread for each new transaction, you can create a pool of threads at program
startup to handle transactions for the life of the program. Each connection is then
handled by a thread that has already been created in the thread pool.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 22 of 64

 Tip Use re-usable threads or thread pools so the creation and deletion overheads do
not add up and degrade the scaling performance of the application.

 Implicit and Explicit Synchronization
Synchronization is almost always necessary in threaded programs to prevent race
conditions in which multiple threads are simultaneously updating the same global
variable. Synchronization limits parallel efficiency even more than system overhead
because it serializes parts of the program. An often-overlooked operation requiring
synchronization is dynamic memory allocation, which must lock the heap to avoid
corrupting memory.
There are several ways to avoid heap lock contention. It is possible to allocate
memory on a thread’s stack instead of the heap using the alloca function or third-
party products such as SmartHeap* from MicroQuill*.
OpenMP and thread libraries have mechanisms to create thread-local storage. Threads
can safely access this storage without synchronization.
Use the following declarations to create thread-local storage in different threading
models:
• In OpenMP use threadprivate
• In Win32, use the TlsAlloc() function
• In Pthreads, use the pthread_key_create function
Concurrent programs are subject to race conditions because threads execute
asynchronously. In the absence of explicit synchronization, the operating system
schedules threads in whatever order it sees fit. This is fine for naturally parallel
applications in which the threads do not interact or share data. However, this situation
is the exception rather than the rule.

Code Sample 3: A simple function that is not thread safe.

Most threaded programs require some synchronization to avoid race conditions. Code
Sample 3 shows a simple function that is not thread safe.
Unless access to the static counter variable is synchronized, data loss can occur as
illustrated in the interleaving shown in Table 1.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 23 of 64

Time Thread 0 Thread 1

T0 Enter function

T1 Enter function

T2 Load (counter = 0)

T3 Load (counter = 0)

T4 Increment (counter = 1)

T5 Store (counter = 1)

T6 Increment (counter = 1)

T7 Store (counter = 1)

T8 Return

T9 Return

Table 1: Thread instruction interleaving by time for the function
UpdateCounter() in Code Sample 3 showing a data race.

To avoid race conditions, all threading methods provide synchronization constructs.
The best way to correct the error in the previous example is with the interlocked
functions provided by the Win32 API or the OpenMP atomic pragma. Thread safe
versions of the simple function are shown in Code Sample 4.

static int counter = 0;

void updateCounter ()
{
 InterlockedIncrement (&counter);
}

static int counter = 0;

void updateCounter ()
{
#pragma omp atomic
 counter++;
}

Code Sample 4: Thread safe versions of the simple function

The Win32 interlocked functions (InterlockedIncrement,
InterlockedDecrement, InterlockedExchange,
InterlockedExchangeAdd, InterlockedCompareExchange) perform
atomic updates on variables without blocking the threads. The same is true for the
OpenMP atomic pragma. Simple atomic updates are significantly faster than other
synchronization mechanisms. They are not generally applicable, however.
When synchronization requires more than an atomic operation, critical sections are the
next best option in terms of efficiency. Critical sections enforce mutual exclusion on
enclosed regions of code. In other words, only one thread may enter a critical section
at a time.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 24 of 64

The functions shown in Code Sample 5 contain data dependences that require
synchronization:

static int a, d;
CRITICAL_SECTION cs;

void DataDependence (b, c, e)
{
 EnterCriticalSection (&cs);
 a = b + c;
 d = a + e;
 LeaveCriticalSection (&cs);
}

static int a, d;

void DataDependence (b, c, e)
{
 #pragma omp critical
 {
 a = b + c;
 d = a + e;
 }
}

Code Sample 5: Simple example of a critical section synchronization construct. The
left-hand code assumes that the Critical Section object was initialized before being
used.

The critical section protects variables a and d. Without it, multiple threads can update
variable a where a = b + c while other threads are reading it (d = a + e), and
multiple threads can simultaneously update variable d.
The Win32 API also provides mutual exclusion functions that enforce criticality but
the similarity ends there:

Code Sample 6: Synchronization using Win32* mutex (left) and an OpenMP* lock
(right). The Win32 example assumes that the mutex object has already been created
prior to use.

Unlike Win32 critical sections, which are local objects, Win32 mutexes are kernel
objects. The zero-contention overhead of acquiring and releasing a mutex is
approximately ten times higher than for a critical section. However, Win32 mutexes
have advantages over critical sections.
Kernel objects are shared among processes so mutexes can synchronize access to
process-shared memory. Mutexes also have safety features to prevent deadlock. If a
thread exits while holding a Win32 critical section, other threads attempting to enter
the critical section will deadlock. This is known as a dangling critical section. Threads
attempting to acquire an abandoned mutex return an appropriate error code
(WAIT_ABANDONED_0).
Mutex variables can also be used in the Win32 WaitForSingleObject and
WaitForMultipleObjects functions, which allow timed waits.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 25 of 64

OpenMP contains locking functions but they are more akin to Win32 critical sections
than mutexes in Intel’s implementation. They are local rather than kernel objects so
they cannot be shared across processes. Also, attempting to acquire an abandoned
OpenMP lock deadlocks a thread.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 26 of 64

6. Methodology for Threading Applications

This chapter presents a methodology for threading applications by stepping through
the generic development cycle. The goals of each phase in the development cycle are
achieved by employing one or more components of the Intel Threading Tools. The
methodology explores usage scenarios to help you speed the development of a
threaded application.

Designing a Threaded Application
The best time to account for threading is at the design phase of application
development. All threading-related data restructuring and code restructuring changes
that occur with serial applications being threaded can be accommodated in the design
phase. This results in a reduced effort in the overall development without the need for
any redesign.
A majority of threaded applications first come into being as serial applications and are
subsequently threaded. In some cases, the serial applications start as prototypes that
eventually morph into threaded applications. In such a scenario, no time upfront is
spent on designing correctly for threads, most of the threading effort is spent in
restructuring and redesigning the serial application.
This section discusses some of the key issues to keep in mind while designing a
threaded application. A contrived problem that relates to real world applications is
used as an example to illustrate the evolution of the design.

Video Editing Example
Consider the design of a threaded video editing application. Initial design targets the
most computationally intensive aspect of the application and further refinements are
made by exploring functional parallelism that exists in the application.

Figure 6 shows a stream of uncompressed video that is read in a stream. Special
effects are applied in real time to the video stream. The processed video stream is then
stored onto disk. This problem can be particularly performance sensitive if the special

Frame 2
Frame 1

Frame 0

.

.

.

. Special Effects Frame 2

.

.

.

.

Frame 1
Frame 0

Figure 6 : Live video editing example

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 27 of 64

effects have to be applied to a live video stream. The time available to process each
frame of video is finite and should be processed before the next frame arrives.
Consider an offline-processing model. If this application is built as a serial
application, then the sequence of actions would be as shown in Code Sample 7.

Code Sample 7: An offline-processing model built as a serial model

In order to thread such a problem, a few pieces of information are crucial to the
success of the threaded version. If the special effects to be performed on each pixel of
the video frame are complex, then the function ProcessFrame() is computationally
intensive.
Using the VTune Analyzer to profile this application shows that ProcessFrame()
stands out prominently as a hotspot in both sampling and call-graph analysis.
Depending on the size of the video frame, the processing of each frame can be divided
into multiple parts and concurrently processed using threads, translating the problem
into a data decomposition problem.

Data Decomposition
In any threaded design, the first area to target is the most time-consuming area in the
code. In the video example, assume that the application of special effects to the video
frame is the most time consuming task, followed by the I/O to read and write a frame.
The threaded version designed to run on a four-processor system is shown in Figure 7.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 28 of 64

Figure 7: Threaded version that implements data parallelism.

In ProcessFrame(), shown in Code Sample 8 the main thread acts as a master
thread and divides the current video frame into four parts in the setup phase as
illustrated in Figure 7 (a). Once the data has been set up, the master thread wakes up
the three worker threads and all four threads, including the master, operate on their
unique section of the video frame. Once the threads are done processing their share of
the data, they wait at a barrier for all threads to complete their sections of the frame.
The master then suspends all of the worker threads and writes the processed frame to
disk before reading the next available frame from the stream.
The pseudo-code for the threaded version of ProcessFrame() is shown in Code
Sample 8. When the master thread returns from ProcessFrame(), it has
successfully completed the processing of the video frame and continues by writing the
frame to disk. The caller function still remains the same as shown in Code Sample 8.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 29 of 64

 struct
 {
 int startx, endx;
 int starty, endy;
 char *data;
 }ThreadData;

 ProcessFrame(char *data)
 {
 ThreadData perThreadData[nThreads];
 //
 // The master sets the limits for
 // the region each thread has to
 // process
 //
 DecomposeData(data, perThreadData,
 nThreads);
 //
 // Wakes the worker threads with
 // information about their data
 // Each worker thread will also
 // execute ProcessSection()
 //
 for(int i=1; i < nThreads; ++i)
 WakeWorkerThread(i, perThreadData[i]);
 //
 // Master does its share of the work
 //
 ProcessSection(perThreadData[0]);
 //
 // Master waits for all the threads
 // to complete processing. Each worker
 // thread goes to sleep after calling
 // ProcessSection()
 //
 WaitForAllThreads();
 }

Code Sample 8: Threaded ProcessFrame() function

Assuming that there are no serious performance issues, you can estimate the
performance of the threaded version. Assume that the special effects processing
accounts for 80% of the time and the I/0 the remaining 20% of the time with the frame
read accounting for one half the I/O time and the processed frame write the other half.
Assuming perfect scaling for the threaded portion of the run, then the expected scaling
performance of this type of application can never be higher than five using infinite
processors as per Amdahl’s Law.
Using four threads, the scaling performance can never be greater than 2.5 as the serial
portion, fully contributed to by the I/O, still accounts for 20% of the serial run and the
parallel portion 80%/4, i.e., 20% as shown in Figure 8. This is the upper limit for the
scaling performance when four threads are used. In reality, due to system overheads
introduced by threading the application, the observed performance can be expected to
be lower than 2.5.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 30 of 64

Figure 8: The elements are executed in a loop. The I\O thread must complete the
write of S1 before doing the following read into R1.

In this case, the serial portion of the application has to be reduced in order to obtain
better scaling.

Figure 9: Cache line for video data streams

Data decomposition problems can be particularly sensitive to false sharing, as
illustrated in Figure 9. False sharing occurs when two threads access different data
elements in the same cache line for reads and writes when run on systems with
multiple-processors or systems with Hyper-Threading technology. This example
decomposition is only shown to illustrate how false sharing could easily be introduced
in the application and not as a recommended approach for data decomposition.
In order to maintain cache coherency, the cache line is invalidated when one of the
threads writes to this cache line. This conflict impacts the second thread that is
accessing elements from this cache line for read only, but has to fetch the cache line

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 31 of 64

again from memory. Depending upon the pattern of usage, this particular problem
could seriously degrade the performance of an application.
Consider the setup phase in Figure 7 (a) and examine the Video data 0 and Video data
1. If the last element of row 1 in Video data 0 and the first element in the first row of
Video data 1 belong to the same cache line, then a false sharing performance penalty
occurs when these pixels are processed for write. False sharing can be avoided by
carefully dividing the work among the threads to cache line boundaries.

Functional Decomposition
Better scaling is achieved if additional read and write buffers are present in addition to
an I/O thread in the thread pool. By overlapping the I/O with actual work, the
execution time can be considerably reduced. Figure 10 illustrates the new design in
the form of a flowchart. Here, most of the required I/O is overlapped with the
computation. This redesign achieves functional decomposition of the I/O task.
However, in the new implementation, three extra buffers must be created. This
algorithm improves the performance of the previously threaded version of the
application.

R0 R1 S0 S1

M

W2W1W0

I/O

Read first frame into R0

Divide data

M

W2W1W0

Barrier

I/O

Read next
frame into

R1

Write S1

I/O

Rotate Buffers
R1->R0; S0->S1

Write to S0

Figure 10: Functional and data decomposition of the video editing example.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 32 of 64

In Figure 10, the master thread’s control flow is depicted by thick lines. A pool of
threads is created (number of processors + 1) at start up and one of the threads is
designated as an I/O thread and another as the master thread. All of the remaining
threads are worker threads.
Initially, when the application is invoked, the master thread reads in the very first
frame into buffer R0. It divides the data taking false sharing into account and wakes up
the I/O thread to read the next frame into the read buffer R1. While the I/O is being
done, the master thread wakes up all the worker threads and points them to their share
of the work. The worker threads write their part of the processing into the S0 write
buffer. When all threads are done, they wait at the barrier (including the I/O thread).
Once the processing of the current frame is complete, the master thread rotates the
buffers by renaming R1 as R0 and R0 as R1 and the write buffers S0 as S1 and S1 as S0
and suspends all of the worker threads. Now, the next frame that has been read in by
the I/O thread resides in R0 buffer and the frame that was just processed is in S1. The
master thread then requests the I/O thread to write out the currently processed frame in
S1 to disk and commences processing the next frame in R0 by dividing up the work.
When the I/O thread is done writing, it starts reading the next frame into R1.
The algorithm presented here is simplified, but for it to actually work, synchronization
constructs have to be used around the buffers to prevent rotating of the buffers before
they have been read into. With this approach, the apparent time spent doing I/O can be
reduced to a fraction of the previous threaded version as it is done asynchronously. By
assuming that the I/O can be reduced to about 5% of the time it took in the serial
version of the application, the expected scaling performance from the newer algorithm
is four using four worker threads on a four-processor system as shown in Figure 10.
As earlier, it is assumed that perfect scaling is obtained in the special effects
processing section. By accommodating both task parallelism and data parallelism, we
were able to improve the scaling performance from ~2.5 to four on a four -processor
system.
It is crucial that all aspects are taken into account while designing a threaded
application. If a person not familiar with the application were to thread the serial
version of this application, they may have ended with the first threaded version of the
application. However, if you are also a threading novice, some of the performance
issues discussed in the section on efficient threading practices could kill the
performance of any threaded application. It is therefore very important to keep in mind
the potential pitfalls while designing an application and exploring both functional and
data parallelism.

Performance Upper Bound
Once you have a threaded version of an application, you also need to determine the
upper limit for scaling in order to understand how close you are to the theoretical
optimal performance. An application written to automatically spawn threads based on
the number of processors present in the system may not scale very well in some
situations with increased number of threads due to very little parallel work or other
limiting factors.
In our second version of the threaded application, the profile of the application had 5%
in serial regions and 20% in parallel regions. However, we know that the background
thread that does I/O takes ~10% for the read and another 10% for the write. The

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 33 of 64

dissimilar threads (I/O and the special effects) in this scenario take identical amounts
of time to process their tasks. However, by increasing the number of threads for
special effects work will have a detrimental effect on the overall scaling performance
as the special effects processing will require less time than the time taken to perform
the read and the write in the background.
Due to synchronization constructs, the worker threads and the master must wait for the
I/O to be completed. If they all took approximately the same amount of time, a
CRITICAL_SECTION object that implements spin-wait should be used for
synchronization to avoid additional system overhead.
Using spin-wait primitives for synchronization in such scenarios where the threads
become unbalanced may be detrimental on systems with Hyper-Threading
Technology. Spin waits use up CPU resources and do not perform any useful work,
thereby affecting other threads that may be running on the same physical processor.
The current example shows an optimal solution with four threads and any additional
threads will create a thread imbalance between the special effects and the I/O threads.
When this information has been determined, the application can dynamically increase
the number of threads when more processors are available, but stop once the scaling
performance upper bound has been reached. The next section presents a methodology
for threading existing serial applications and applying some of the principles discussed
here.

Serial Application to Threaded Application
The methodology described here for threading uses a generic development cycle to
step through the various stages of development. Knowledge of Intel’s tools and how to
effectively use them in a development cycle can be applied appropriately for the
design and development of any threaded application. We have already discussed the
various phases of the generic development cycle. In this section, we will examine each
phase in detail and which tools aid in accomplishing the objective of the phase.

Analysis
The goal of the analysis phase is to prepare a baseline measurement of the
performance of the serial application and determine the regions of potential
parallelism in the application. To measure the performance of a serial application, use
a representative workload (or workloads) that exercises most of the code paths being
analyzed. The workloads that are selected should be as small as possible to keep the
memory footprint and the application runtime low. The primary tool that is used in
this phase is the VTune Performance Analyzer. Figure 11 shows the analysis stage
captured as a flowchart.
Once a workload or workloads have been selected, the application is run on the
workload as sampling and call graph statistics are collected using the VTune analyzer.
The critical paths in the call graph are analyzed and the most time consuming path is
selected. The selected path is then examined by looking at the call sequence and the
most appropriate functions (node) for parallelism is identified.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 34 of 64

Figure 11: Analysis phase

Call graph analysis is recommended because sampling information may not be
suitable for all types of applications. Sampling data sometimes have flat profiles and
picking the right level may not be possible or the hotspots may point to the functions
that results in the most number of calls, but may not be at the right level in the code
path for threading. To get the right perspective, call graph data has to be used even
though it perturbs the execution time due to instrumentation.
Once you have identified the regions of code in your application most suitable for
parallelization, you need to determine the type of parallelism to implement. Most of
the important decisions that you need to make are made in this phase.

Design
The design phase is where the type of parallelism being implemented is examined and
necessary changes made to the design to accommodate a threading model. If the
parallelism being implemented can be accomplished by threaded library functions
already included in Intel MKL or the Intel IPP, then you can eliminate some of the
steps involved in the design process.
A majority of the effort in the design phase involves the restructuring of data and code
to make it optimal for performance. In order to restructure data or code, all the global
data accesses by threads have to be identified first. Without any tools, it can be a very
tedious effort, especially for medium- and large-scale applications, as you must go
through the call sequence of the thread and examine every memory access for a global
memory access.
Use the Intel threading tools to simplify the task of restructuring data for optimal
threaded performance.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 35 of 64

Figure 12: Flowchart of the initial design methodology

The general methodology for the design phase is shown in Figure 12, and can be
summarized as follows:
1. If you are already an expert in threading applications, do a brief analysis to

determine the sections of your application that are suitable for threading.
If you are not an expert in threading applications, you will need to spend a
considerable amount of time to understand the application and identify regions in
your code that are good candidates for parallelization.

2. Inspect the code and try to determine if any of performance library functions can
be used in your application. For example, if the application being developed has
to solve a linear system of equations in the end, it may be beneficial to use calls
from the Intel MKL that are threaded with OpenMP to immediately get the
benefits of threading. However, additional work has to be done to determine the
memory conflicts and design for data restructuring, if required.

3. If Intel MKL/Intel IPP functions cannot be used, do the following:
a. Choose a type of decomposition.
b. Use the Thread Checker and OpenMP to locate memory conflicts. See the

Thread Checker documentation for more details.
c. Restructure your data according to specific performance issues, as described

in the Data Restructuring section.

Decomposition Types
This section describes decomposition type issues in more detail. The decomposition
type determines the type of data restructuring, if required.
Functional Decomposition
To identify memory conflicts for a functional decomposition problem, use OpenMP in
conjunction with Intel compilers and the Thread Checker to quickly identify all of the
memory conflicts in the identified code path. This section discusses shortcuts that help
you catch all the global memory accesses as quickly as possible.
To prepare the code path you want to thread, do the following:

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 36 of 64

• Encompass the code path in a function
• Use OpenMP pragmas around the created function, as shown in Code Sample 9.

Code Sample 9: OpenMP is used in this example to detect memory conflicts.

By surrounding the function to be threaded with #pragma omp sections, the
OpenMP runtime library creates the default number of threads for the system and
executes the function call FunctionThread()twice in parallel. Use the Thread
Checker on this sample, to identify the memory conflicts that arise with multiple
threads accessing global data. These errors can then be examined carefully for any
data restructuring that may be required.
The task that could take anywhere between a few hours to days can now be
accomplished in a matter of minutes with the use of Intel Threading Tools. Use
OpenMP pragmas to identifying the memory conflicts only. During the
implementation phase, remove these pragmas and replace them by the appropriate
threading calls of your choice.

Data Decomposition
OpenMP is an ideal candidate for data parallel problems. Use it for both design and
implementation to solve data decomposition problems. You can add OpenMP
incrementally to an existing application, usually without significant recoding. With
OpenMP, your original serial code is left largely intact and maintainable.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 37 of 64

Figure 13: A flowchart for data parallelism design

OpenMP compilers are available for most operating systems. Non-OpenMP compilers
simply ignore these pragmas and compile the original serial code. The usage model
for data decomposition problems is shown in Figure 13.
Use an iterative approach to remove memory conflicts with help from the Thread
Checker until no conflicts are found. The use of shared or private clause is shown here
to highlight the usage model and not imply these are the only clauses that can or
should be used for data decomposition problems.

Data Restructuring
The main purpose of data restructuring is to avoid the problems of excessive
synchronization and false sharing. This section describes these problems in detail and
proposes solutions for dealing with them.

Excessive synchronization
This section discusses the problem of excessive synchronization and suggests a way to
overcome this problem with data restructuring. If global data accesses are found
throughout the profile of a thread, each of these global data accesses must be protected
by synchronization constructs. This could lead to the accumulation of system
overhead due to excessive synchronization that could result in degraded performance.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 38 of 64

Figure 14: This bar illustrates the time spent by a thread. The green sections indicate
time spent on parallel work. Red sections indicate time spent accessing global data,
that is, on synchronization. While some overhead is expected, excessive
synchronization degrades performance.

Figure 14 shows a profile of a thread with many global data accesses in red and all the
parallel work in green. All shared global data access must be protected by
synchronization constructs to prevent data races from occurring in the application. As
shown in the figure, many global data accesses that occur close to each other can be
merged into one larger synchronization point, thereby eliminating many
synchronization points.
If there are two global data accesses, and if the data that is accessed second is not
updated between the two accesses, then the second access can be made immediately
after the first. By protecting these two data accesses with synchronization, two
synchronization points can be reduced to one. Also, large critical sections that occur in
the code may be potential candidates for a local copy of shared data for each thread if
the data dependencies allow for such an optimization.
By merging global data access that occur close to each other and by making local
copies of global data, you can significantly improve the scaling performance of your
threaded applications. Also, those global data accesses that occur as a read-only
operation do not require synchronization constructs. By observing these simple rules
of data restructuring, your application can benefit with significant scaling performance
boost.

False Sharing
Another issue avoided by data restructuring is the problem of false sharing. Two
threads can use unique data elements on the same cache line for read and write. When

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 39 of 64

one of the threads writes to this cache line, the same cache line referenced by the other
thread is invalidated. Any new references to data in this cache line by the second
thread result in a cache miss and the cache line will have to be loaded again from
memory. This is known as false sharing and if this type of activity is inadvertently
introduced into the application, it could lead to severe performance degradation.
The problem of false sharing usually manifests itself when applications use global
state arrays to maintain information about each thread, as is illustrated in this section
with a short code example as shown in Code Sample 10. It is best to address the
problem of false sharing during the design phase. However, this problem can easily be
identified during the tuning stage using the VTune Performance Analyzer.
When thread functions are implemented as shown in Code Sample 10, the global
variable sumLocal causes false sharing as both threads write to this array and their
distinct elements lie on the same cache line. Each time thread_1 writes to its
element in the cache line, the cache copy of the same line for thread_2 is
invalidated. The variable thread_2 now has to reload the cache line containing the
variable into cache before it can write its element into the array, which in turn
invalidates the copy owned by thread 1.

Code Sample 10: An example of false sharing

This example is a particularly extreme case of false sharing resulting in severe
performance degradation. In order to overcome this problem, padding can be added
around the data of each thread to ensure that elements accessed by different threads all
lay on separate cache lines.
The other solution is to use a local copy from stack for all updates and then perform a
global update that reflects these updates to the global entity.

Implementation
Once all design considerations have been addressed, the application can be threaded
by implementing the identified parallelism with the chosen threading model. The
recommended threading model depends on the type of decomposition:
• For data decomposition problems, OpenMP is recommended.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 40 of 64

• For functional decomposition, explicit threading is recommended since there is
limited support from OpenMP.

Functional Decomposition

Figure 15: Implementation of functional parallelism

The flowchart shown in Figure 15 depicts one sample implementation methodology
rather than all possible scenarios with functional decomposition. This sample
methodology can be applied to the majority of functional decomposition problems. It
is extremely useful for the class of problems able to use thread pools to manage the
threading aspect and distributing the available tasks among the inactive threads. The
steps of the methodology can be summarized as follows:
1. Encapsulate the code path meant for functional decomposition in a function and

assign a thread to this task.
2. Use the Thread Checker to check your application for memory conflicts.
3. Examine all reported memory conflicts for the restructuring considerations.
4. Ensure that any remaining global data accesses are protected by synchronization

constructs.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 41 of 64

Data Decomposition

Figure 16: Flowchart depicting data decomposition methodology

The data decomposition methodology relies heavily on OpenMP for implementation.
OpenMP can be used to express data parallelism quite effectively. Once the
implementation of the application has commenced, different sections of the
application can be easily threaded incrementally with the use of OpenMP.
The following section takes a sample application and steps through this process of
implementing with OpenMP. Consider the example of computing the value of pi. The
serial code is shown in Code Sample 11.

Code Sample 11: Calculation of pi

Computation of pi is an example of numerical integration and the accuracy of the
computed value increases with the number of iterations. This example is an extremely

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 42 of 64

parallel problem and is simple enough to follow the implementation methodology.
Some knowledge of OpenMP is required to understand this example.
In order to compute the value of pi, this code performs a function evaluation
numIterations times. If you use the VTune analyzer on this program, a hotspot
would point to the for loop.
Use the methodology described in Figure 16, to implement a threaded version of this
code using OpenMP.
Encapsulate the for loop with an OpenMP parallel region. By doing this, the for
loop will be executed in parallel using the default number of threads that the OpenMP
runtime creates.

Code Sample 12: Modified version of code to generate pi. In this instance, OpenMP
pragmas are used.

Code Sample 12 shows the modified source with the OpenMP constructs.
You can use the Intel® Thread Checker to detect memory conflicts in the modified
source code. To do this, you first need to compile your modified source code using the
Intel compiler with the /Qopenmp option.

 Tip For complete details on the Thread Checker, consult Getting Started with the Intel®
Thread Checker guide or the online help included with the product.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 43 of 64

The modified source for this program with the memory conflicts accounted for is

shown in Code Sample 13.

Code Sample 13: Modified numerical integration example threaded with OpenMP.

This methodology is applied until all of the reported errors are addressed. In the
implementation, an omp for work sharing construct enables rapid threading.

Debugging & Testing
Once you thread your application you must check it for correctness by verifying
against the results reported by the serial version. In most situations, the debug and
testing stages go hand in hand.
In this phase, you debug all the inconsistencies detected in the testing phase. This
forms an iterative process you continue until the results obtained are verified to be
consistent with the serial application run.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 44 of 64

Debugging Large Applications

Figure 17: Debug methodology

Figure 17 shows the proposed methodology to follow while debugging a large
application. A release build with debug symbols has a shorter run time and the
additional benefit of not having to compile the application with source
instrumentation. Using a release build is particularly useful for applications that take
many hours to build. Once the memory conflicts have been identified, the
methodology proposes source instrumentation of only the affected modules that are
reported by Intel Thread Checker to contain errors.
Using the /Qtcheck option, source instrumentation enables the extraction of
information about the variables that cause these conflicts. This drill down
methodology saves considerable time in the debug process.
Figure 18 shows a sample screen shot of Thread Checker that shows memory conflicts
occurring in an application. Double-clicking each error gives you the ability to
identify the source lines that caused the error.

Figure 18: Sample display of a race condition error found by the Intel® Thread
Checker.

The errors indicate the two variables x and sum. These variables are global to the
threads and cause conflicts when the parallel version is run. The variable is declared as

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 45 of 64

private and the variable sum is declared as a reduction to eliminate the conflicts. By
correcting these conflicts, you can achieve an error free implementation of the
program.

Evaluating Third Party DLLs
The second use of a debug step is for evaluating third-party DLLs that offer useful
functionality. With the methodology shown in Figure 19, you can evaluate the DLL
for thread safety and based on the outcome of this step, decisions can be made to use
or discard the DLL’s functionality.

Figure 19: Testing DLLs for thread safety.

To test a DLL for thread safety, do the following:
1. Write a short test driver that encapsulates calls to DLL functions in OpenMP

pragmas.
2. Create an Activity using the Intel Thread Checker to run your modified

application to determine if any conflicts are reported inside the DLL.
3. If no errors are reported, then the DLL is safe for use in a threaded application.
Code Sample 14 shows a code snippet that uses the OpenMP section pragma to
accomplish the objective of determining if a DLL is thread-safe or not. The task of
writing a small test application with wrappers around all of the functions that are of
use should be an excellent investment if the outcome of this effort determines the
extent of thread safety of the DLL. The caveat to this approach is that when DLLs use
OpenMP and source is not available for the DLLs, then the Thread Checker may
report false positives.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 46 of 64

Buffer data[2];
.
#pragma omp parallel sections
{

 #pragma omp section
 DllFunc(&data[0]);

 #pragma omp section
 DllFunc(&data[1]);
}

Code Sample 14: Use of OpenMP SECTIONS to determine DLL thread safety

Testing an application involves verifying the correctness of the result of the threaded
application with that of the serial run. If no errors are reported by the Thread Checker
at this stage, you can safely assume that most of the runtime race conditions have been
identified and fixed.
If the threaded run’s results match that of the serial run, then the application is
consistent.

Tuning for Performance
Once your threaded application is correct and bug-free, you can focus on tuning your
application for optimal performance. By this stage in the development process, most
of the time consuming optimizations have been addressed in the data restructuring
section. This section attempts to apply the heuristics or rules outlined in Efficient
Threading Practices to prepare the threaded application for optimal performance.
Use the following tools to identify potential performance problems:
• Thread profiler
• VTune Performance Analyzer
The following sections examine the methodology to be used with both tools.

Using OpenMP Thread Profiler
Use the thread profiler within the VTune analyzer to analyze OpenMP applications for
performance. In order to view performance statistics collected for an OpenMP
application, build your application with the /Qopenmp_profile option to link in
the instrumented runtime libraries.
Alternatively, you can build your application with the /Qopenmp option, but run your
application from within the VTune environment for runtime replacement of the
OpenMP library with the instrumented version.
If you build your application with the /Qopenmp_profile, it can be run from the
command line. Upon completion a .gvs file is generated that can be viewed from
within the VTune environment.
Thread profiler enables you to view data from multiple runs and to compare them at
the same time. It supports many views that show a performance summary of the
application or thread-specific breakdown.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 47 of 64

Since OpenMP is structured, the application can also be viewed by region, for
example, parallel, serial, etc.
Figure 20 (a) shows a sample screen shots of Activity results in the thread profiler’s
Summary view for an application with thread imbalance. Figure 20 (b) shows results
for the corrected application.

a)

1 Thread1 Thread1 Thread1 Thread

2 Threads2 Threads2 Threads2 Threads

4 Threads4 Threads4 Threads4 Threads

b)

1 Thread1 Thread1 Thread1 Thread

2 Threads2 Threads2 Threads2 Threads

4 Threads4 Threads4 Threads4 Threads

Figure 20: (a) Screenshot of Thread profiler showing load imbalance (b) Corrected
example without the imbalance.

In this example, the scaling obtained by the imbalanced case in Figure 20 (a) for two
and four threads respectively are ~1.4X and ~2.1X, respectively.
The Summary view displays color-coded time categories including: sequential,
sequential overhead, synchronized, locks, barriers, imbalance, parallel overheads, and
parallel.
The manual Developing Multithreaded Applications: A Platform Consistent
Approach, available on the Threading Tools Web site, provides specific advice for
avoiding threading pitfalls such as load imbalance.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 48 of 64

High load imbalance?

Done

STATIC scheduling?

PARALLEL
SECTIONS?

Use DYNAMIC
or GUIDED

Replace
SECTIONS

with loop-level
parallelism

.

.

Yes
Yes

Yes

No

No

Figure 21: Sample flowchart of advice for dealing with load imbalance. Useful advice
related to avoiding threading pitfalls is available in the manual Developing
Multithreaded Applications: A Platform Consistent Approach.

By applying the advice for load imbalance in the manual, the problem with imbalance
shown in Figure 20 (a) showed dramatic improvement in performance. Figure 20 (b)
shows the same application’s performance after applying the advice given for the
problem encountered. The scaling obtained after the fix, for two and four threads were
~1.8X and ~2.9X, respectively. Figure 21 shows a typical flowchart for dealing with
load imbalance.

Using Win32 Thread Profiler
This section presents information on the type of information that is presented by
Thread Profiler for Windows API and how it will help you identify and locate
bottlenecks that are limiting the parallel performance of your multi-threaded
application. Thread Profiler instruments the application inserting calls to statistics
gathering functions in the Thread Profiler library. Thread Profiler performs program
execution flow and critical path analysis to determine whether any threading delay in a
multithreaded application will affect the overall execution time. The critical path is the
longest execution flow in the application. For more detail about the critical path and
critical path analysis, please refer to the online documentation for Thread Profiler.
For your application to be able to be instrumented under VTune, it has to be linked
with the /fixed:no option. Upon successfully instrumenting and running your
application within VTune using Thread Profiler, you should see Activity results in the
Thread Profiler viewer. You are now ready to identify and locate bottlenecks that are
limiting the parallel performance of your application
Figure 22 shows a sample screen shot of Thread Profiler’s Critical Path view for an
application with a main thread and 4 worker threads. This particular profile shows
some serial impact time (orange), where only one thread is executing while preventing
other threads from running as it holds a resource other threads need, some parallel
impact time (green) and certain amount of overhead (yellow).

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 49 of 64

Figure 22: Critical Path View showing the data collected for the critical path

In order to find more detailed information, double clicking on the critical path will
take you to the Profile view. Figure 23 shows the Threads view selected in the Profile
view. This view gives information on all the threads that were in the system, their
time spent on the critical path and their lifetimes. The lifetimes are shown by the green
translucent colors. The dark green halos are the time spent by each thread on the
critical path and the colors show the state of each thread while on the critical path.

Figure 23: Threads view in the Profile View Tab

With the Threads view, you can deduce if the threads are balanced and if any
algorithmic changes are necessary. Another view that is extremely useful is the
Objects View in the Profile View tab. This shows all of the synchronization and

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 50 of 64

threading objects used by the application and the impact of any of these objects on the
execution time. A sample screenshot of the Objects View is shown in Figure 24.

Figure 24: Objects view in the Profile view tab showing all of the objects used by the
application

In this sample application, there are two major objects in use that affect the execution
time. A critical section object that has the most impact time and a Fork-Join object (
WaitForMultipleObjects) that has minimal impact time. You can now group objects
with threads to determine which of the threads in the application are impacted by these
synchronization objects. This view grouping Objects with Threads is shown in Figure
25.

Figure 25: Grouping View using Objects for first level grouping and Threads for
second level grouping. This view shows which threads were impacted by which
synchronization object

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 51 of 64

It is clear from Figure 25 that the Critical section object 11 impacts the execution of
threads 2, 3, 4 and 5. It is possible to view the source line for this instance by right
clicking on the screen and accessing the pop-up menu. In addition to viewing
performance bottlenecks, Thread Profiler also gives a high level view of thread
activity in the application. This requires certain advanced features, namely Thread
activity and Transitions to be turned on. However, by enabling these advanced
features, your application may slow down due to the overhead encountered to collect
additional information. Figure 26 shows a sample screen shot of such a view.

Figure 26: Timeline view showing Thread activity and critical path transitions

The timeline view shown in Figure 26 clearly shows when threads are blocked (light
green) and when they are active (dark green). Hovering the mouse over the “yellow”
lines gives you information on the synchronization objects that cause a thread to run
and other threads to block. This shows the power of the tool and how it helps analyze
explicitly threaded applications using Win32 API.

Using the VTune Performance Analyzer
The VTune Analyzer is a very powerful tool that analyzes your application using a
combination of technologies. You can use sampling to collect runtime information
about your system based on special-purpose event counters built into the
microprocessor. Information about all the software running during the collection
period, is recorded and can be analyzed for various data such as hotspots, instructions
retired, mispredicted branches, cache misses, memory aliasing conflicts, stalls, and
much more.
You can use call graph analysis to collect information about the call tree, number of
functions calls, function execution time, function wait time, and to identify the most
time consuming path, also called the critical path. To do call graph analysis, the
VTune Analyzer instruments the software in memory so that it can collect function

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 52 of 64

information. A combination of sampling and Call Graph can be used to analyze
parallel applications.
The VTune Analyzer is complimentary to the Intel Thread Checker and thread
profiler. Table 2 highlights some of the key differences among the tools. See the
VTune Analyzer’s product documentation for complete usage instructions and details.

Tool or
VTune™
Performance
Analyzer
feature

Sampling Call Graph Thread Checker Thread Profiler

Typical
runtime
performance
overhead

1-2%.
Depends upon
the sampling
frequency. Can
be much lower.

5-25%.
Depends upon
the number of
function calls

50-500% or more.
Depends upon the
amount of memory
accessed.

5-25%. Depends upon the
number of OpenMP*
pragmas.

What software
can be
analyzed?

All running
software.

The software
associated with
the one process
under
examination.

The software
associated with the
one process under
examination.

The software that contains
OpenMP pragmas.

Setup
required

None. Symbols
and source
required to
drill-down

Link option
/fixed:no

Link option
/fixed:no.
Compiler option
/Qtcheck
required for
detailed analysis.

Compiler option
/Qopenmp_profile for
stand-alone profiling.
/Qopenmp for analysis
within the VTune™
Performance Environment

What data is
collected?

Processor-
focused data
such as
instruction
pointer and
event counters.
Hundreds of
events are
possible.

Function timing
and call tree
data.

Threading-focused
data such as
synchronization,
parallel constructs,
and memory
accesses.

Timings for parallel and serial
transitions and locks,
barriers, and other
synchronization occurring at
OpenMP pragmas.

Table 2: Tools comparison.

Using Call Graph Analysis to Analyze Load Balancing
Load balancing threads is one of the most basic parallel performance optimizations.
The best case is when all processors are kept busy making active progress on the
workload; the worst case is when one or many processors are sitting idle waiting for
other threads to finish. The detection of load balancing requires that you know which
threads, by design, are supposed to consume the same amount of time.
The VTune Analyzer presents the information to evaluate load balancing in both call
graph and sampling views. When using call graph, the call tree’s self-time should be

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 53 of 64

reasonably similar to that of other threads for proper load balancing. Not all threads in
the system need to be balanced; only the ones that your design specified.
In Figure 27, the two threads identified should consume the same amount of time but
do not. Therefore, these two threads are not balanced.

Thread
Imbalance
Thread

Imbalance

Figure 27: A screen shot of the call graph view of the VTune™ Performance
Analyzer screenshot showing thread imbalance.

Using Sampling Analysis to Analyze Load Balancing
Sampling is another method that can be used to evaluate thread balancing. Balanced
threads should contain approximately the same number of clocktick event samples and
the samples should be evenly distributed among the processors.
In general, use the following steps to analyze load balancing using the sampling data
collector of the VTune Analyzer. For more detailed usage instructions, see the online
help.
1. Before performing the thread analysis, be sure to select only the threads contained

in your process by clicking the Process button on the toolbar. The VTune
analyzer now displays all the processes that ran on your system when the
sampling data collection took place.

2. Select one process on the graph, and click the Thread button to display the
threads for the selected processes.

3. Click the Click Show/Hide CPU Information button to see the samples collected
on each processor.

Figure 28 is a screenshot of a sampling session that shows four threads. Assume that
the four threads should consume equal amounts of time because that is how the
software was designed. But as you can see, the top horizontal bars are far shorter than
the bottom two. More samples were collected in the bottom two threads meaning that
they took longer to execute. These four threads are not load balanced.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 54 of 64

Figure 28 Screenshot of the sampling view showing thread imbalance

An interesting fact to note in Figure 28 is that the samples are somewhat evenly
distributed among the processors. This means that even though the threads take
different amounts of time to execute, the execution is evenly distributed among the
available processors.
When the threads contain a different number of samples or when the coloring of the
CPUs indicates that at least one processor was more active than others, a load
imbalance has occurred and should be investigated.
Unfortunately, it is possible to be tricked into thinking that the threads are balanced
when they really are running in serial. When multiple threads run for similar amounts
of time on different processors, but in serial, the graph shows what appears to be a
balanced situation. To avoid this confusion, you must know that the threads actually
ran in parallel at the same time. If this situation did occur, it would very likely happen
only if processors are sitting idle however the VTune analyzer can quickly and easily
detect idle time.

Using the VTune Performance Analyzer to Detect Idle Time
Time-based sampling (TBS) shows idle time by placing samples in the operating
system’s idle loop and by collecting more samples per second than expected. Figure
29 shows samples collected in module processr.sys, which is the module that
contains the operating system’s idle loop.
When samples are collected in processr.sys, you can be certain that idle time
exists. You can also see in Figure 29 that many samples were located in Ring 0, the
privilege level reserved for the operating system, again indicating the idle loop.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 55 of 64

Privilege level

Figure 29: VTune Performance Analyzer screenshot showing idle time

Tracking Overhead
Overhead is a nightmare for performance whether or not you are using threads.
Overhead can be caused by other processes running in the system, other modules
running in your process, or by inefficient code running in your module. The VTune
Analyzer displays the potential overhead caused by other processes running in the
system on the Process View. In Figure 30, samples collected in other processes are
overhead.

Figure 30: VTune Performance Analyzer screenshot showing overhead

Overhead can also be detected in the Module View as shown in Figure 31 where a
bunch of samples were collected in a driver. Without knowledge about what is
expected to occur, you can’t be 100% certain that these samples are overhead.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 56 of 64

However, anytime samples occur outside your application, further investigation is
warranted.

Figure 31: Hotspots by module

Overhead can also be contained within the application. Again, it is very important to
have a good understanding of what the application is supposed to be executing or you
may overlook a significant performance problem. In Figure 32, the hotspots located in
the application are shown.

Figure 32: Hotspots by function.

Overhead can be seen as samples collected in the _ftol(), which converts a
floating-point number to an integer. The _ftol() can always be treated as overhead,
and just by using the Intel C++ Compiler and compiling for the Pentium 4 processor

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 57 of 64

or newer, you can completely remove this overhead. In other cases, you must redesign
pieces of your application to remove or reduce the overhead.

Synchronization, Overhead, Idle Time, and Context Switches
Synchronization, overhead, idle time, and context switches are related. When you
suspect that the overhead of synchronization may be a performance issue due to the
detection of overhead and idle time in conjunction with the information that you
already know about your application and its use of synchronization objects, using
other features of the VTune Analyzer, beyond simple sampling and call graph tracing,
may help to sort things out. Using the counter monitor data collector, context switches
can be tracked as shown in Figure 33. Locations of high context switches may indicate
synchronization overhead.

Figure 33: Counter monitor data help you understand the cause-and-effect
relationship between the computer's subsystems and your application.

In summary, the VTune Analyzer and the thread profiler plug-in provide many
powerful features that can be used to determine if threading performance is as
expected. The analyzer is the only tool that helps you understand certain upper limits
for any threaded application, especially data-parallel applications. For example, by
keeping track of the bus utilization of a two-threaded application when run on a four-
way system and comparing against the utilization for a four-threaded run, you can map
utilization trends and project the number of threads with which the bus saturates. This
information can give you insight on an upper limit for the number of threads
applications can effectively use on the four-way system.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 58 of 64

7. Architecture-Specific Tuning for Hyper-
Threading Technology

Hyper-Threading Technology enabled processors contain multiple logical processors
per physical processor package. The state information necessary to support each
logical processor is replicated while sharing and/or partitioning the underlying
physical processor resources. Given that processor resources are generally
underutilized by most applications, processors with Hyper-Threading Technology
enabled can improve overall application performance. Multiple threads running in
parallel can achieve higher processor utilization and increased throughput.
The first step in multithreading an application for systems with Hyper-Threading
Technology is to follow the threading methodology for designing, implementing,
debugging, tuning and validating performance on Symmetric Multiprocessor (SMP)
systems. With a few exceptions, the general approach is the same. Multithreaded
applications that perform well on SMP systems will generally perform well on
systems with Hyper-Threading Technology. But do not confuse Hyper-Threading
Technology enabled processors with SMP systems. Each processor in an SMP system
has all its physical processor resources available and will not experience any resource
contention at this level. Well-designed multithreaded applications perform better on
SMP systems and should be the upper bar on your performance expectations when
running on Hyper-Threading Technology enabled processors.
The second step is to review the Intel® Pentium 4 and Intel® Xeon™ Processor
Optimization Manual and the white papers on Hyper-Threading Technology available
on Intel Developer Services Web site <www.intel.com/IDS>. The best way to design,
implement and tune for Hyper-Threading Technology enabled processors is to avoid
known pitfalls.

Designing
Design applications with flexibility for effective use of processor and system
resources. For example, multithreaded applications may detect the number of physical
processors available in a system and then create a number of threads equivalent to that
value.
Intel Pentium 4 and Intel Xeon processors provide information on the different levels
and sizes of cache available for the particular processor. Since the cache configuration
is not specified by the Intel NetBurst® microarchitecture, this processor resource can
vary among Intel processor products. By designing in flexibility for cache levels and
size, applications can dynamically optimize data distributions and computations in
order to maximize usage of cache.
When designing for Hyper-Threading Technology enabled processors, be aware that
architectural state is the only resource that is replicated. All other resources are either
shared or partitioned between logical processors.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 59 of 64

A shared resource is a resource that any logical processor can fully utilize but access is
shared with all other logical processors. This can result in resource contention.
Although a resource may be shared, individual use of such resources may be tagged
for a specific logical processor.
Resource contention can result in stalling a logical processor waiting on the
availability of a tagged resource. For resources that are partitioned, a logical processor
can only utilize its allocated portion of the resource. If one logical processor is not
using its portion of a resource, that share of the resource is still not available for
another logical processor to use.
The cache hierarchies for both instructions and data are shared. Write-combining store
buffers are shared. All of the execution unit resources are shared. But the load/store
buffers, the table lookup buffers, instruction queue to the execution units, and the
instruction reorder buffer are partitioned. Instruction decoding and delivery are shared
equally in a round-robin fashion as long as no logical processor instruction queue
stalls. If any logical processor stalls due to a full instruction queue to the execution
units, other logical processors can take advantage of the available resource to continue
decoding/delivering additional instructions.
A Hyper-Threading Technology enabled processor does not increase the data cache
size but supports additional logical processors. If an application has been optimized
for a specific cache size and number of physical processors, then the performance is
likely to degrade on a Hyper-Threading Technology enabled processor system. This is
because each logical processor would be trying to fully utilize the cache resulting in a
cache resource contention. However, by designing in the flexibility to detect the
number of logical processors as well as physical processors, cache levels, and cache
size, you can optimize your application for peak performance on SMP systems as well
as Hyper-Threading Technology enabled processor systems.

Implementing
The best way to design, implement, and tune for Hyper-Threading Technology
enabled processors is to avoid known coding pitfalls. Implementing an application for
Hyper-Threading Technology generally extends beyond just the application to include
components or libraries provided by third-party vendors. Any implementation should
use components or libraries that are thread-safe and designed specifically for Hyper-
Threading Technology enabled processors. Use operating system (OS) and/or
threading synchronization libraries instead of implementing application-specific
mechanisms such as spin-waits. The OS and threading libraries are likely to already be
optimized for various processors. Applications can automatically take advantage of
the enhancements either through re-linking and/or through the use of dynamic link
libraries.

Debugging
There are no unique debugging techniques for multithreaded applications running on
Hyper-Threading Technology enabled processors. The same debugging techniques
and tools available for SMP systems should be used when debugging a multithreaded
application on Hyper-Threading Technology enabled processors.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 60 of 64

Tuning
For best performance, applications should first be tuned for the Intel Pentium 4
processor before tuning for Hyper-Threading Technology enabled processors. If
performance is not as good as expected on systems with Hyper-Threading
Technology, the next step is to review the latest Intel® Pentium® 4 and Intel Xeon™
Processor Optimization Manual as well as whitepapers on Hyper-Threading
Technology available from the Intel Developer Services Web site. Look for known
Hyper-Threading Technology optimization opportunities and coding pitfalls that may
still be part of your application.
If performance is still not as expected, the next step is to narrow the scope of interest
to a Hyper-Threading Technology enabled processor performance issue. Gather
performance results for each of the following configurations:
• a single-processor system with the uni-processor kernel
• a single-processor system with a multiprocessor kernel
• a single processor system with Hyper-Threading Technology enabled and a

multiprocessor kernel
• a dual processor system with an multiprocessor kernel
Comparing these performance results, verify that the performance degradation is not a
multiprocessor issue. Verify that the dual Pentium 4 processor system performance is
as expected and exceeds single Pentium 4 processor without Hyper-Threading
Technology enabled. If not, or if the performance gain is very low, then focus tuning
effort on the standard SMP tuning methodology.
Next, verify that the single Pentium 4 processor with multiprocessor kernel degrades
less than 5% versus a single Pentium 4 processor uni-processor kernel. Note that
single threaded (or effectively single-threaded) applications may actually degrade due
to multiprocessor kernel overhead not required for uni-processor kernels.
Finally, verify that the performance on Hyper-Threading Technology enabled
processors degrades versus single Pentium 4 processor with uni-processor kernel.
Assuming reasonable SMP performance but degraded performance on Hyper-
Threading Technology enabled processors, the next step is to root-cause the
performance degradation using the Intel VTune Performance Analyzer.
Use the Intel Tuning Assistant of the VTune Analyzer to identify issues and obtain
tuning advice. The Tuning Assistant uses an architecture-specific tuning methodology
to guide you to useful processor event data collection and interpretation.
In addition to the data collected for Hyper-Threading Technology enabled processors,
collect the same data on single Pentium 4 processor systems without Hyper-Threading
Technology enabled and dual Pentium 4 processor systems. Comparing the time in
clockticks between systems can narrow the scope of where processor time is being
spent. Then it is a matter of understanding what is causing the difference in clock ticks
between the various platforms using the other recommended processor events.

Validation
There are no unique performance validation techniques for multithreaded applications
running on Hyper-Threading Technology enabled processors. The same validation
techniques, tools, and workloads available for SMP systems should be used when

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 61 of 64

validating performance of a multithreaded application on Hyper-Threading
Technology enabled processors.

Known Pitfalls
There are several known pitfalls that you can encounter when tuning an application for
Hyper-Threading Technology enabled processors. These pitfalls are covered in detail
in the Intel® Pentium 4 and Intel Xeon™ Processor Optimization Manual and the
whitepapers on Hyper-Threading Technology available from the Intel Developer
Services Web site. Short descriptions of each of the known issues are discussed in the
following sections:

Spin-waits

A spin-wait loop is a technique used in multithreaded applications whereby one thread
waits for other threads. The wait can be required for protection of a critical section, for
barriers or for other necessary synchronizations. Typically the structure of a spin-wait
loop consists of a loop that compares a synchronization variable with a predefined
value as shown in Code Sample 15.

Code Sample 15: Structure of a fast spin-wait loop.

On a processor with a super-scalar speculative execution engine, a fast spin-wait loop
results in the issue of multiple read requests by the waiting thread as it rapidly goes
through the loop. These requests potentially execute out-of-order. When the processor
detects a write by one thread to any read of the same data that is in progress from
another thread, the processor must guarantee that no violations of memory order
occur. To ensure the proper order of outstanding memory operations, the processor
incurs a severe penalty. You can significantly reduce the penalty from the memory
order violation by inserting a PAUSE instruction in the loop.
If the spin-wait begins before a thread updates the variable, then the spinning loop
consumes execution resources without accomplishing any useful work. To prevent the
resulting waste of processor cycles that a waiting thread may use, insert a call to
Sleep(0). This enables the thread to yield if another thread is waiting. But if there is
no waiting thread, the spin-wait loop continues to execute.
On a multiprocessor system, the spin-wait loop consumes execution resources but
does not affect the application performance. On a system with Hyper-Threading
Technology enabled, the consumption of execution resources without contribution to
any useful work can negatively impact the overall application performance.
Therefore, the preferred solution for avoiding application specific spin-wait loops is to
replace the loop with an operating system thread-blocking API, such as the Microsoft

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 62 of 64

Windows* threading API WaitForMultipleObjects. This call causes the
operating system to block the waiting thread from consuming processor resources.

Write-Combining Store Buffers
Data is read from the first-level cache, that is, the fastest cache, if possible. If the data
is not in that level, the processor attempts to read it from the next level out, and so on.
When data is written, it is written to the first-level cache only if that cache already
contains the specific cache line being written, and "writes-through" to the second-level
cache in either case. If the data cache line is not in the second level cache, it must be
fetched from further out in the memory hierarchy before the write can complete.
Data store operations place data into "store buffers", which stay allocated until the
store completes. There are also a number of "write-combining"(WC) store buffers,
each holding a 64-byte cache line. If a store is to an address within one of the cache
lines of a store buffer, the data can often be quickly transferred to and combined with
the data in the WC store buffer, essentially completing the store operation much faster
than writing to the second-level cache. This leaves the store buffer free to be re-used
sooner, minimizing the likelihood of entering a state where all the store buffers are full
forcing the processor to stop processing and wait for a store buffer to become
available.
The Intel NetBurst architecture, as implemented in the Intel Pentium 4 and Intel Xeon
processors, has six WC store buffers. If an application is writing to more than four
cache lines at about the same time, the WC store buffers begin to be flushed to the
second-level cache. This is done to help insure that a WC store buffer is ready to
combine data for writes to a new cache line. For best performance, the Intel®
Pentium® 4 Processor and Intel Xeon™ Processor Optimization guide recommends
writing to no more than four distinct addresses or arrays in an inner loop, so that you
do not use more than four cache lines at a time.
With Hyper-Threading Technology enabled processors, the WC store buffers are
shared between two logical processors on a single physical processor. Therefore, the
total number of simultaneous writes by both threads running on the two logical
processors must be counted in deciding whether the WC store buffers can handle all
the writes. In order to be reasonably certain of getting the best performance by taking
fullest advantage of the WC store buffers, it is best to split inner loop code into
multiple inner loops, each of which writes to no more than two regions of memory.
Generally you should look for data being written to arrays with an incrementing index,
or stores via pointers that move sequentially through memory. Writes to elements of a
modest-sized structure or several sequential data locations can usually be counted as a
single write, since they often fall into the same cache line and can be write combined
on a single WC store buffer.

64K Alias Conflicts
The Intel Xeon processor with Hyper-Threading Technology shares the first-level data
cache among logical processors. If two data virtual addresses reside on cache lines that
are modulo 64 KB apart, they cause a conflict for the same cache line in the first-level
data cache. This alias conflict can affect both the first-level data cache performance as
well as impact the branch prediction unit. It is particularly troublesome for

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 63 of 64

applications that create multiple threads to perform the same operation but on different
data.
Subdividing work into smaller tasks performing the identical operation is often
referred to as data domain decomposition. On Microsoft Windows* operating
systems, threads are created on megabyte boundaries.
Threads that perform similar tasks and access local variables on their respective stacks
encounter an alias conflict condition, resulting in significant overall application
performance degradation. To avoid this performance degradation, use the
__alloca() function to adjust an individual thread’s starting stack address by a
variable amount. Using the __alloca() function improves overall application
performance on Intel Xeon processors with Hyper-Threading Technology.

Effective Cache Locality
Effective use of data cache locality is one of the many factors that impact cache
performance. A well-known data cache blocking technique can take advantage of data
cache locality. To use this technique, restructure loops with frequent iterations over
large data arrays by sub-dividing the large array into smaller blocks, or tiles, such that
the block of data fits within the data cache. Each data element in the array is reused
within the data block before operating on the next block or tile.
Depending on the application, a cache data blocking technique can be very effective.
It is widely used in numerical linear algebra and is a common transformation applied
by compilers and application programmers.
Since the second-level unified cache contains instructions as well as data, compilers
often try to take advantage of instruction locality by grouping related blocks of
instructions close together as well. Typical applications benefiting from cache data
blocking include image or video applications where the image can be processed on
smaller portions of the total image or video frame. However, the effectiveness of the
technique is highly dependent on the data block size, the processor cache size and the
number of times the data is reused.
With Hyper-Threading Technology, the cache is shared between logical processors so
the relationship between block size and cache size also holds. Cache blocking
algorithms need to take this into account. If a physical package has two logical
processors, then while cache blocking, you must assume that only half of the cache is
available to teach logical processor for use.
You should detect the data cache size using Intel’s CPUID instruction and then
dynamically adjust cache blocking tile sizes to maximize performance across
processor implementations. Be aware that a minimum block size should be established
such that the overhead of threading and synchronization does not exceed the benefit
from threading. As a general rule, cache block sizes should target approximately one-
half to three-quarters the size of the physical cache for processors without Hyper-
Threading technology and one-quarter to one-half the physical cache size for a Hyper-
Threading Technology enabled processor supporting two logical processors. However,
you should tune your block size based on your applications performance.

Threading Methodology: Principles and Practices

© 2004 Intel Corporation Page 64 of 64

8. Using the VTune Performance Analyzer
to detect Hyper-Threading Technology
Issues

You can use the Intel Tuning Assistant of the VTune Analyzer to detect many
processor-specific issues that can affect performance. This section discusses how to
use the Tuning Assistant to identify various performance issues relating to Hyper-
Threading Technology.
To create a new project, an Activity, and to configure the sampling data collector to
collect processor event data, follow the instructions in the “Configuring
for EBS Data Collection” topic in the VTune Analyzer help. Focus on
events that are particularly important for Hyper-Threading Technology
performance issues.
After you run your Activity using event-based sampling, the Tuning Assistant
examines the collected event data and provides insights and hints about performance
tuning opportunities and other events to collect. An example insight is shown in
Figure 34.
The Tuning Assistant takes the guesswork out of the determining which counters may
or may not be indicating a performance issue. Use this information as a starting point
to get an idea as to what optimizations and source code changes will make the biggest
difference.

Figure 34: Sample screenshot showing suggestions given by the Intel Tuning
Assistant.

