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Abstract 
Threading serial applications has become more common with the advent of operating 
systems and hardware architectures that support multiple processors. In order to 
realize the performance potential of systems with Hyper-Threading Technology 
enabled, applications must be threaded for performance to take maximum advantage 
of the new architectures. However, the process of threading an application can be 
difficult without the right tools. This document introduces threading concepts and 
provides a methodology for threading serial applications and tuning threaded 
applications for performance using the Intel® Threading Tools. Emphasis is placed on 
writing correct and efficient threaded applications. Discussion includes analysis of 
common coding pitfalls and their solutions. Sample implementations are also provided 
to highlight some of the recommended paradigms. 
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About this Document 

This document is organized by chapter as follows: 
1.  Introduction provides an overview of the threading methodology. 
2.  Intel® Threading Tools introduces the tools Intel provides to help you create, 

analyze, check, and improve the performance of your multi-threaded application. 
3. Generic Development Cycle presents an overview of a generic model you can use 

to design, create, and optimize a multi-threaded application. It highlights the use 
of the different threading tools associated with each phase of the development 
cycle. 

4. Approaches to Parallel Programming presents parallel computing theory by 
discussing various parallel models and the means to achieve these by exploring 
various threading techniques. 

5. Efficient Threading Practices describes best practices for threading an application. 
6. Methodology for Threading Applications returns to the generic development cycle 

in greater detail, providing examples and specific guidelines for successfully 
threading an application. 

7.  Architecture-Specific Tuning for  Technology discusses architecture-level 
specific considerations for improving the performance of your threaded 
application. 

8.  Using the VTune Performance Analyzer to detect Hyper-Threading Technology 
Issues explains how to use different features of the VTune analyzer to your 
advantage. 
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1. Introduction 

Today’s operating systems strive to make the most efficient use of a computer’s 
resources. Most of this efficiency is gained by sharing machine resources among 
several processes (multi-processing). Such “large-grain” resource sharing is enabled 
by operating systems without any instructions from applications or processes. All 
these processes can potentially execute concurrently, with the CPU (or CPUs) 
multiplexed among them. Newer operating systems provide mechanisms that enable 
applications to control and share machine resources at a finer grain, that is, at the 
threads level. Just as multiprocessing OSes can perform more than one task 
concurrently by running more than a single process; a process can perform more than 
one task by running more than a single thread. This document discusses how to use 
threads to improve your application’s performance, responsiveness, and throughput. It 
also presents a methodology for threading a serial application.  
As with most programming techniques, the primary goal of threading is to help you 
take the best advantage of the system resources. Concurrency increases the complexity 
of the design, testing and maintenance of the code while offering increased throughput 
on single or multiprocessor machines. Threading represents a major step forward from 
the time when concurrency was implemented using inter-process communication. 
Overhead from inter-process communication can have a negative impact on 
performance. By threading an application some of this complexity can be reduced, 
especially with respect to inter-process communication. In addition, threading retains 
the ability to scale the level of parallelism with an incremental increase in system 
resource requirements. However, threading an application may introduce errors that 
are hard to detect and reproduce. A majority of the effort in threading applications 
falls in the design, implementation and the debug phases of the development cycle. 
Threading effort depends on your experience in threading applications and your 
knowledge of the application that is being threaded.  
The Intel® Threading Tools are designed to help all developers, from novice to 
expert, by providing tools that target various stages in the development cycle. This 
document discusses the Intel Threading Tools and their role in development cycles. It 
also presents sections on parallel computing theory, threading principles, and efficient 
threading practices before stepping through the proposed methodology.  
The objective of multiprocessing is to have some process running on the CPU at all 
times in order to maximize utilization. Each process is given a time-slice during which 
time it executes. Creation of a process involves the creation of an address space, the 
application’s image in memory - this includes a code section, a data section and a 
stack. Parallel programming using processes requires the creation of two or more 
processes and an inter-process communication mechanism to coordinate the parallel 
work during their concurrent execution.  
Threads are tasks that run independently of one another within the context of a 
process. A thread shares code and data with the parent process but has its own unique 
stack and architectural state that includes the instruction pointer. Threads operate in 
the same manner as processes and like processes, share the CPU. Each thread is a 
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different stream of control that can execute its instructions independently, enabling a 
multithreaded process to perform numerous tasks concurrently. The main benefits of 
threading include the following: 
• Performance gains from multiprocessing hardware (parallelism) 
• Increased application throughput 
• Increased application responsiveness 
• More efficient use of system resources 
• Well structured code 
In some cases threading an existing serial application increases the complexity of the 
application. Sharing resources such as global data can introduce common 
programming errors such as storage conflicts and other race conditions. Debugging 
such problems is difficult as they are often non-deterministic and debugging probes 
such as print statements can mask such errors.  
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2. Intel® Threading Tools 

Intel® Threading Tools enable you to rapidly multithread your single-threaded 
applications, assist in locating errors and facilitate increased application performance 
on Intel processors by enabling architectural features. This section describes the 
overall features and capabilities of the threading tools.  

VTune™ Performance Analyzer 
The VTune™ Performance Environment is a performance framework that includes the 
VTune Performance Analyzer. The VTune analyzer enables you to tune an application 
for optimal performance on Intel architectures. The key features of the VTune 
analyzer component include the following: 
• Time and event based sampling offer a non-intrusive means of collecting profile 

information of your application with minimal overhead. No instrumentation or 
recompilation is required.  

• Hotspot analysis enables you to identify regions in your application that take the 
most amount of time and help concentrate the tuning efforts on regions with the 
greatest potential for performance improvement. 

• Call graph profiling presents a pictorial view of program flow. It also helps you 
identify critical functions and call sequences that are time consuming. 

• Integrated source view provides detailed sampling information for each source 
code line. 

• The Intel® Tuning Assistant provides valuable advice on tuning your system 
resources and application performance. It analyzes the data collected by the 
VTune Performance Analyzer, identifies performance issues, and provides tuning 
advice, using its multiple knowledge-bases. 

For more information, see the Performance Analyzers website at: 
http://developer.intel.com/software/products/vtune/ . 

Intel® C/C++ and Intel® Fortran Compilers  
Intel compilers help make your software run at top speeds on Intel 32-bit processors, 
including the new Intel Pentium® M processor based on Intel Centrino™ mobile 
technology, and 64-bit Intel Itanium® and Itanium 2 processors. Optimizations 
include support for Streaming SIMD Extensions 2 (SSE2) in the Intel Pentium® 4 
processor and software pipelining in the Intel Itanium® and Itanium 2 processors. 
Inter-procedural optimization (IPO) and profile-guided optimization (PGO) can 
provide greater application performance. Intel compilers support multi-threaded code 
development and optimization through the Auto-Parallelism feature and OpenMP* 2.0 
support. 
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OpenMP Support  
OpenMP is the industry standard for portable multithreaded application development, 
and is effective at fine grain (loop level) and large grain (function level) threading. 
The Intel Compilers support OpenMP API version 2.0 and perform code 
transformation for shared memory parallel programming. The Intel compilers support 
multi-threaded application development and debugging, with support for OpenMP 2.0. 

Auto-Parallelization (Preview Feature) 
The Intel C++ Compiler 7.1 includes an Auto-parallelization feature for automatic 
threading of loops. This feature provides developers with an easy way to take 
advantage of parallelism to improve application performance on multiprocessor 
systems. This option detects parallel loops capable of being executed safely in parallel 
and automatically generates multithreaded code for these loops. Automatic 
parallelization relieves you from having to deal with the low-level details of iteration 
partitioning, data sharing, thread scheduling and synchronizations. It also provides the 
benefit of the performance available from multiprocessor systems, and systems that 
support Hyper-Threading technology.  
For more information, see the Intel compilers Web site at 
http://developer.intel.com/software/products/compilers/ . 

Intel® Thread Checker 
The Intel® Thread Checker is one of the key components of the threading tools. It is a 
plug-in to the VTune Performance Environment that helps you locate hard-to-catch 
errors and potential errors in your threaded application. Use the Thread Checker to 
detect the following types of errors: 
• Deadlocks and potential deadlocks 
• Data races 
• Thread stalls 
• API violations 
• Failing library routines 
Thread Checker pinpoints errors to their actual line in the source code. The details 
provided for each error are dependent on the type of instrumentation that is performed 
on the application. The Thread Checker collects data using your choice of source or 
binary instrumentation, or a combination of both. Source instrumentation is done by 
making source code changes before (or as) your code is compiled. Binary 
instrumentation is done by alerting the executable files directly to insert data 
collection capabilities, without knowledge of the source code. 
For more information, see the Threading Tools Web site at: 
http://developer.intel.com/software/products/threading/  

Thread Profiler 
Thread profiler is a plug-in to the VTune Analyzer that helps you identify 
performance bottlenecks in your applications that are threaded using OpenMP* and 
Win32* API.  
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OpenMP Thread Profiler 
Building your application with the /Qopenmp_profile compiler flag directs the 
compiler to link the application with the instrumented versions of the library. 
Applications built with instrumented libraries can be run outside the VTune 
Environment to generate the runtime statistics file. The statistics file can then be 
viewed with the help of thread profiler within the VTune Analyzer. If the application 
is built without the instrumented libraries, the VTune Analyzer substitutes the 
OpenMP runtime DLLs with the instrumented version when run within the VTune 
environment. However, the application must be built to use the DLL version of the 
OpenMP runtime library by using /MD /Qopenmp at compile time. 
Thread profiler presents runtime statistics in various views so that you can see the 
breakdown of your application’s performance on a per-thread basis and on a per-
OpenMP region basis. The profile is broken down according to time spent in serial 
regions, parallel regions, critical sections and various synchronization overheads. 
Using this information, you can determine if the threaded application performance is 
being affected by excessive overhead, synchronization, or thread imbalance.  
 

Win32* Thread Profiler 
Win32 Thread Profiler offers features that are useful in profiling explicitly threaded 
software using the Microsoft* Win32 threading API to locate performance bottlenecks 
impacting parallel performance. This is achieved by instrumenting the application 
binary and inserting calls to statistics gathering functions in the Thread Profiler 
library.  The data collected is then used to identify performance issues in 
multithreaded software: 
 
• Synchronization delays 
• Stalled threads 
• Time in blocking operations 
• System utilization (Over vs. under utilization) 

 

Thread Profiler helps you: 
 
• Understand the threading patterns in multithreaded software 
• Understand the performance impact of synchronization  
• Compare the performance impact of different synchronization methods, different 

numbers of threads, or different algorithms 
• Locate synchronization constructs that impact execution time 
• Determine the sections of code to optimize for sequential performance and for 

threaded performance  
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Intel® Performance Libraries  
The Intel® Performance Libraries reduce the cost of development and maintenance by 
providing a range of library functions. The Intel Integrated Performance Primitives 
library is a cross-platform software library with a variety of multimedia functions to 
provide increased performance for audio/video codecs and image/signal processing. 
The Intel Math Kernel Library provides linear algebra, Fast Fourier Transform and 
vector math functions enabling increased performance for financial, scientific and 
engineering software. 
The Intel Math Kernel Library (Intel MKL) is composed of highly optimized 
mathematical functions for engineering, scientific and financial applications requiring 
high performance on Intel® platforms. The functional areas of the library include 
linear algebra consisting of LAPACK and BLAS, Fast Fourier Transform (FFT) and 
vector transcendental functions (vector math library/VML).  
Intel MKL is optimized for the latest features and capabilities of the Intel Pentium 4 
processor, Intel Xeon™ processors and Intel Itanium architecture. The Intel MKL is 
compatible with Windows and Linux environments. Intel MKL enables you to exploit 
many of the advantages of parallelism with none of the work. It provides excellent 
scaling on many applications. 
For more information, see the Performance Libraries Web site at: 
http://developer.intel.com/software/products/perflib/. 
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3. Generic Development Cycle 
This chapter presents an overview of a generic program development model you can 
use to thread your application and improve its performance. You can use appropriate 
components of the Intel Threading Tools at each stage of development to improve the 
performance of your threaded application. Each stage of the development cycle is 
described in greater detail, with examples, in the chapter,  Methodology for Threading 
Applications.  

Analysis Phase 
Typically, the analysis stage involves profiling a serial application to determine 
regions of the application that can most benefit from threading. Use the VTune 
Performance Analyzer to identify critical paths using call-graph analysis and time-
based sampling (TBS) to determine hotspots in the critical path. Once you determine 
potential candidates for threading, choose an appropriate threading model. This can be 
easily done by first determining the type of parallelism, (data or functional), that 
characterizes each threading candidate. 
 

 
Figure 1: A flowchart depicting the key steps of a generic threading methodology. 

Design Phase  
During the design phase, you examine the critical regions identified during the 
analysis phase to determine the design changes required to accommodate a threading 
paradigm. Design changes include making modifications to facilitate the use of 
threading models, including: 
• data restructuring  
• code restructuring 
During this phase, you need to address the following questions: 
•  Which variables must be shared? 
•  Is the current structure is a good candidate for threading? 
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Implementation Phase  
The implementation phase involves converting design elements to actual code by 
selecting an appropriate threading model. In addition to its main purpose as a tool for 
the debug and testing phases, you can use The Intel Thread Checker in creative ways 
to aid in the design and development of threaded applications. 
Consider implementing your program using one or more of the following threading 
methodologies: 
• Use the Intel compilers to automatically parallelize certain loops.  
• Use the Thread Checker to locate syntactic or runtime errors and identify 

variables that cause errors.  
• Specify the parallelism in your application using OpenMP pragmas or directives. 
• Explicitly parallelize your program using calls to the Win32 thread API or the 

POSIX threads API. 

Debug Phase 
During the debug phase, you iron out bugs; ensure the correctness of your application, 
and meet product requirements.  
Use dynamic analysis of your application to uncover issues and support interactive 
debugging of problem areas.  
Use the Intel Thread Checker during this phase to detect non-deterministic errors such 
as data races, deadlocks, and thread stalls.  

Testing and Tuning Phase 
During testing, you examine the execution performance and the correctness of the 
threaded application as follows:  
1. Use the Intel Thread Checker to validate the correctness of your threaded 

application. It is assumed that the serial run of the application results in correct 
values, so any errors can be assumed to be due to threading errors.  

2. Compare performance of your threaded application against the serial application’s 
performance to estimate the scaling potential Apply parallel-program specific 
ideas to increase performance.  

The tuning phase increases application performance incrementally where possible. 
Note that correct parallel design must be ensured before beginning application 
performance tuning.  
1. Use Thread Profiler to determine if there are any high level threading related 

performance issues.   
2. Fix performance issue using a better choice of threading API or by redesign.  
 
Redesign of the application may require a pass through the debug and test phases as 
these changes may have introduced threading errors. An iterative cycle of Debug-
>Test->Tuning may be required to eliminate all problems. 
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4. Approaches to Parallel Programming 
To effectively thread an application, you must choose the most appropriate threading 
method. While variations in threading methods may not impact performance, choosing 
the wrong threading method increases the amount of time spent modifying, debugging 
and tuning a threaded application. 
To choose the best threading method, characterize your application in terms of two 
models: task-parallel or data-parallel.  

Task-Parallel Applications 
In task-parallel applications, independent work that is encapsulated in functions is 
mapped to threads which execute asynchronously as shown in Figure 2. Thread 
libraries such as the Win32* thread API or POSIX* threads are designed to express 
task-level concurrency. 
 

 

Figure 2: A Personal Information Manager (PIM) is a good example of an 
application that contains task-level concurrency. When expressing task-level 
concurrency, independent functions are mapped to threads as illustrated in the 
pseudo-code. 

Data-Parallel Applications 
Data parallelism implies that the same instructions or operations are applied 
repeatedly to different data. This model is shown in Figure 3. Compute-intensive 
loops are good candidates for data parallel threading methods.  
Typical image processing algorithms that apply a filter to a pixel or group of pixels to 
compute a new value for a pixel are a common example of data parallelism. As long 
as the pixel operations are independent, the computations to generate new pixel values 
can be done in parallel.  
Sometimes it is possible for the compiler to automatically express data parallelism. 
Or, you can describe the parallelism using a directive syntax called OpenMP*. The 
compiler is responsible for converting the directives to threaded code. 
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Figure 3: A spell checker is a good example of a data-parallel operation. The same, 
independent operation of comparing a word in a file against a dictionary is 
performed repeatedly, as shown in the pseudo-code. 

Note that both parallel models can exist in different parts of an application. A database 
is a good example of an application that exhibits both parallel models. The task of 
adding records to the database could be assigned to one thread, sorting to another, 
indexing to yet another and a pool of threads could service queries. A database query 
applies the same operation to different data, making it a data-parallel task. 

Threading Methods 
The primary design goals of OpenMP and thread libraries are different. Data parallel 
methods such as OpenMP are designed to improve performance through 
multiprocessing. Explicit threading methods, though just as capable at improving 
parallel performance, are primarily designed to express the natural concurrency that is 
present in most applications. In fact, the target platform of many threaded applications 
is a uni-processor computer.  
There two reasons to use threading: to express concurrency and to improve 
performance. Consider these reasons in terms of word processing, which is not 
normally considered a performance-driven application. When a large document is 
printing, users may want to continue working. Many users would not tolerate a frozen 
interface during a long print job. If an application has multiple threads, the operating 
system can context switch between them, thus hiding latency. The user perceives the 
improved response time from the application as faster performance. 
This section describes different types of threading methods. 

Automatic Parallelization 
Use the -Qparallel option of the Intel compilers to automatically parallelize some 
loops. When -Qparallel is enabled, the compiler attempts to identify loops that can 
be safely executed in parallel. The following guidelines improve the likelihood that 
the compiler will successfully identify a parallel loop: 
• Expose the trip count of the loop 
• Avoid references to global data or procedure calls in the loop body 
• Do not branch out of the loop 
Exposing the trip count of the loop does not mean that the trip count of a loop must be 
fixed at compile-time. Rather, the compiler must be able to determine whether the trip 
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count varies during execution of the loop. A loop cannot be safely parallelized if the 
iteration count varies based on conditions within the loop. Branching from the loop 
has a similar effect. Failure to adhere to these recommendations does not 
automatically disqualify a loop from parallel execution. For example, calling a pure 
function such as a routine with no side-effects does not disrupt parallelism.1 However, 
the compiler will err on the side of caution when it cannot guarantee correct parallel 
execution. Use the -Qpar_report3 option to get a full report on which loops were 
successfully parallelized and the dependencies that prohibit parallelization of others. 
See the compiler documentation for more details. 

Compiler-Directed Parallelism with OpenMP* 
The most advanced auto-parallelizing compilers are not up to the task of parallelizing 
hundreds or thousands of lines of code spanning multiple source files. In contrast, if 
you understand the underlying algorithm, you may know instinctively that the same 
code is free of dependencies and safe to execute in parallel. For this reason, a 
directive-based syntax called OpenMP* was developed to enable you to describe 
parallelism to the compiler. 
 

Parallel Regions

Master
Thread

Figure 4: OpenMP* is a fork/join method: every parallel region has a clearly defined 
beginning and end. 

OpenMP* quickly became an industry standard for compiler-based threading after its 
introduction in 1997. Before OpenMP, several competing but similar sets of parallel 
compiler directives were available. The OpenMP specification unified these syntaxes 
and extended their capabilities to handle larger applications.  
The OpenMP specifications define a set of Fortran directives and C/C++ preprocessor 
pragmas to express data parallelism. OpenMP is a fork/join method for creating and 
terminating threads as shown in Figure 4. You must specify the start and end of each 
parallel region. 
Use the -Qopenmp option to tell the Intel compilers to process OpenMP directives or 
pragmas to produce a threaded executable. Otherwise, the OpenMP directives are 
ignored. This is a key advantage of OpenMP over other parallel programming 
methods. It is incremental and relatively non-invasive. OpenMP can parallelize 

                                                        
1 For this reason, Fortran 95 includes a PURE attribute to clearly identify pure functions to the compiler. It 
should also be noted that the Fortran 90/95 array syntax is implicitly parallel. 
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specific loops or regions of the program without large-scale code modifications. The 
original serial code is left largely intact.  

Expressing Concurrency with Thread Libraries 
Consider two sample codes that can be used to calculate the value of Pi by numerical 
integration: 
• Code Sample 1 uses a single OpenMP pragma, leaving the underlying serial code 

intact. In this case, the code can still be compiled by a non-OpenMP compiler that 
would ignore the pragma. 

• Code Sample 2 uses explicit threading using the Pthreads* API, which requires 
significant work to perform code restructuring. It requires adding explicit 
synchronization in order to guarantee correct results. The code of Code Sample 2 
can not be used in environments where Pthreads are not supported. 

 
Code Sample 1: A single OpenMP* pragma is used, leaving the underlying code 
intact. 
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#include <stdio.h>
#include <pthreads.h>
#define INTERVALS 100000
#define THREADS 4

float global_sum = 0.0;
pthread_mutex_t global_lock =
           PTHREAD_MUTEX_INITIALIZER;

void *pi_calc (void *num);

int main ()
{
  pthread_t tid[THREADS];
  int i, t_num[THREADS];
  for (i = 0; i < THREADS; i++)
  {
     t_num[i] = i;
     pthread_create (&tid[i],
                     NULL,
                     pi_calc,
                     &t_num[i]);
  }

  for (i = 0; i < THREADS; i++)
     pthread_join (tid[i], NULL);

  printf ("Sum = %f\n", global_sum);
}

void *pi_calc (void *num)
{
   int i, myid, start, end;
   float h, x, my_sum = 0.0;

   myid = *(int *)num;
   h = 1.0 / INTERVALS;
   start = (INTERVALS / THREADS) * myid;
   end = start + (INTERVALS / THREADS);

   for (i = start; i < end; i++)
   {
      x = h * ((float)i - 0.5);
      my_sum += f(x);
   }
   pthread_mutex_lock (&global_lock);
      global_sum += my_sum;
   pthread_mutex_unlock (&global_lock);
}

 

Code Sample 2: In this example, pi is calculated using POSIX* threads, a more 
invasive method than the calculation that uses OpenMP*. 

 

The key differences between traditional thread libraries and OpenMP can be 
summarized as follows: 
• Thread libraries such as Pthreads* or the Win32* thread API have been around 

longer and are more widely used than OpenMP. 
• Thread libraries are more complex than OpenMP, but also more general. Win32 

threads can do anything that OpenMP can do (though not always as easily). 
OpenMP cannot do everything that thread libraries can do. 

• Since thread libraries are not restricted to a fork/join parallel model, they can 
express multiple levels of concurrency.  

• Thread libraries provide mechanisms for inter-process communication and 
synchronization. 
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5. Efficient Threading Practices 
This chapter describes essential concepts and recommended algorithms for correctly 
threading an application. 

Amdahl’s Law 
Amdahl's law is a theoretical basis by which the performance of data-parallel 
situations can be determined. It provides the necessary theoretical background for the 
performance issues discussed in this section. Use Amdahl’s Law shown in Figure 5 to 
gauge how sequential operations limit the scalability of a parallel process.  

 
Figure 5: Amdahl’s Law: Break down of total time spent by a process using N 
processors.  An amount of time, P, is spent in parallel, but it comes with an overhead 
cost. 

Since we are looking for the theoretical limit of scalability, assume an infinite number 
of processors with no parallel overhead. Amdahl’s Law reduces to a simple ratio:  

Parallel

Total

T
T

yScalabilit =  

If only half of a process is able to take advantage of parallelism, the maximum 
possible scalability is two – assuming an infinite number of processors and perfect 
efficiency. If only two processors are available, the maximum possible speedup is 
1.33, assuming perfect efficiency. 
If T is the time needed to execute serially, then if only two processors are available, 
the minimum amount of time needed is T/2 (to execute the half of the code which is 
not parallel) plus (T/2)/2 to execute the parallel half on two processors, or a total 
time of 3*T/4. Dividing T by(3*T/4) results in a 4/3 or 1.33 speedup. 
Use Amdahl’s Law to easily assess the potential benefits of parallel processing. For 
example, creating multiple threads to process an image should greatly improve 
performance on multiprocessor systems. However, file I/O operation is inherently 
sequential. If it takes longer to load and save an image than it does to apply an image 
filter, creating threads to speed the filter operation may not be worth while. It may 
however be worth the effort to run the filter on a separate thread from the file I/O. 
Thus, data decomposition may not make sense, but functional decomposition might. 
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Granularity 
The concept of granularity offers another useful guideline for when and when not to 
use parallel processing. With Amdahl’s Law, you determine whether the ratio of 
parallel to serial work is sufficient to merit threads. With granularity, you must decide 
whether the amount of work per independent task (referred to as grain size) is 
sufficient to merit threading. Unlike Amdahl’s Law, defined by an objective equation, 
granularity is more subjective. 
For example, consider the iterative solutions to differential equations. Each iteration 
depends on the previous iteration. Therefore, the iterations are strictly sequential but 
the work within an iteration may contain opportunities for parallelism. Consider that 
in every iteration, all of the computations are performed in a single function.  
A flat profile of such programs can be misleading. It indicates that most of the 
compute-time is spent in this function. The natural conclusion is that this function is a 
good candidate for threading. However, it is important to determine the approximate 
time per iteration. It is possible that this number is less than the system overhead 
required to create and maintain the threads, which degrades performance as the 
number of threads increases. In this example, the grain-size is too fine to warrant 
threads.  
Use the call-graph collector of the VTune Performance Analyzer to help you decide 
whether to thread a function or its caller. 

Thread Creation 
To simplify Amdahl’s Law, parallel overhead was ignored. This is, of course, an 
unrealistic assumption. Creating a thread under Windows costs roughly the same as 
1,000 integer divides. The operating system (OS) must also maintain and schedule 
threads. Maintaining a thread state requires system resources. Thread scheduling often 
requires context switching. System overhead limits scalability but good algorithm 
design can minimize its effects. 
With OpenMP it is easy to vary the number of threads for each parallel region but it is 
rarely beneficial to have more ready threads than processors. This simply increases 
system overhead without providing additional performance. 
Explicit threading libraries are more general than the OpenMP fork/join model. Any 
thread can create new threads and destroy others. Threads can pop in and out of 
existence throughout the life of the program. A threads-on-demand implementation is 
explicit and straightforward, much like dynamic memory allocation. Resources are 
requested from the operating system as needed. This is often the most direct route to a 
threaded application and often provides satisfactory performance. But it can also 
generate enough system overheads to limit scalability. 
Considering a database example, it is relatively easy to map every transaction such as 
adding/deleting records, querying, etc. to a thread and to let the OS handle scheduling.  
If transaction volume is light, this implementation could provide adequate efficiency. 
However, large volume could easily swamp the system with too many threads.  
If transaction volume is heavy, then the number of connections is higher. Instead of 
creating a thread for each new transaction, you can create a pool of threads at program 
startup to handle transactions for the life of the program. Each connection is then 
handled by a thread that has already been created in the thread pool. 
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 Tip Use re-usable threads or thread pools so the creation and deletion overheads do 
not add up and degrade the scaling performance of the application. 

 Implicit and Explicit Synchronization 
Synchronization is almost always necessary in threaded programs to prevent race 
conditions in which multiple threads are simultaneously updating the same global 
variable. Synchronization limits parallel efficiency even more than system overhead 
because it serializes parts of the program. An often-overlooked operation requiring 
synchronization is dynamic memory allocation, which must lock the heap to avoid 
corrupting memory. 
There are several ways to avoid heap lock contention. It is possible to allocate 
memory on a thread’s stack instead of the heap using the alloca function or third-
party products such as SmartHeap* from MicroQuill*. 
OpenMP and thread libraries have mechanisms to create thread-local storage. Threads 
can safely access this storage without synchronization. 
Use the following declarations to create thread-local storage in different threading 
models: 
• In OpenMP use threadprivate 
• In Win32, use the TlsAlloc() function  
• In Pthreads, use the pthread_key_create function 
Concurrent programs are subject to race conditions because threads execute 
asynchronously. In the absence of explicit synchronization, the operating system 
schedules threads in whatever order it sees fit. This is fine for naturally parallel 
applications in which the threads do not interact or share data. However, this situation 
is the exception rather than the rule.  
 

 
Code Sample 3: A simple function that is not thread safe. 

 
Most threaded programs require some synchronization to avoid race conditions. Code 
Sample 3 shows a simple function that is not thread safe.  
Unless access to the static counter variable is synchronized, data loss can occur as 
illustrated in the interleaving shown in Table 1. 
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Time Thread 0 Thread 1 

T0 Enter function  

T1  Enter function 

T2  Load (counter = 0) 

T3 Load (counter = 0)  

T4  Increment (counter = 1) 

T5  Store (counter = 1) 

T6 Increment (counter = 1)  

T7 Store (counter = 1)  

T8 Return  

T9  Return 

 

Table 1:  Thread instruction interleaving by time for the function 
UpdateCounter() in Code Sample 3 showing a data race. 

To avoid race conditions, all threading methods provide synchronization constructs. 
The best way to correct the error in the previous example is with the interlocked 
functions provided by the Win32 API or the OpenMP atomic pragma. Thread safe 
versions of the simple function are shown in Code Sample 4. 
 

static int counter = 0;

void updateCounter ()
{
     InterlockedIncrement (&counter);
}

static int counter = 0;

void updateCounter ()
{
#pragma omp atomic
      counter++;
}

Code Sample 4: Thread safe versions of the simple function 

 
The Win32 interlocked functions (InterlockedIncrement, 
InterlockedDecrement, InterlockedExchange, 
InterlockedExchangeAdd, InterlockedCompareExchange) perform 
atomic updates on variables without blocking the threads. The same is true for the 
OpenMP atomic pragma. Simple atomic updates are significantly faster than other 
synchronization mechanisms. They are not generally applicable, however. 
When synchronization requires more than an atomic operation, critical sections are the 
next best option in terms of efficiency. Critical sections enforce mutual exclusion on 
enclosed regions of code. In other words, only one thread may enter a critical section 
at a time.  



Threading Methodology: Principles and Practices 

© 2004 Intel Corporation  Page 24 of 64 

The functions shown in Code Sample 5 contain data dependences that require 
synchronization: 

static int a, d;
CRITICAL_SECTION cs;

void DataDependence (b, c, e)
{
      EnterCriticalSection (&cs);
      a = b + c;
      d = a + e;
      LeaveCriticalSection (&cs);
}

static int a, d;

void DataDependence (b, c, e)
{
   #pragma omp critical
   {
       a = b + c;
       d = a + e;
   }
}

Code Sample 5: Simple example of a critical section synchronization construct. The 
left-hand code assumes that the Critical Section object was initialized before being 
used. 

 
The critical section protects variables a and d. Without it, multiple threads can update 
variable a where a = b + c while other threads are reading it (d = a + e), and 
multiple threads can simultaneously update variable d. 
The Win32 API also provides mutual exclusion functions that enforce criticality but 
the similarity ends there: 
 

 
Code Sample 6: Synchronization using Win32* mutex (left) and an OpenMP* lock 
(right). The Win32 example assumes that the mutex object has already been created 
prior to use. 

Unlike Win32 critical sections, which are local objects, Win32 mutexes are kernel 
objects. The zero-contention overhead of acquiring and releasing a mutex is 
approximately ten times higher than for a critical section. However, Win32 mutexes 
have advantages over critical sections.  
Kernel objects are shared among processes so mutexes can synchronize access to 
process-shared memory. Mutexes also have safety features to prevent deadlock. If a 
thread exits while holding a Win32 critical section, other threads attempting to enter 
the critical section will deadlock. This is known as a dangling critical section. Threads 
attempting to acquire an abandoned mutex return an appropriate error code 
(WAIT_ABANDONED_0).  
Mutex variables can also be used in the Win32 WaitForSingleObject and 
WaitForMultipleObjects functions, which allow timed waits. 
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OpenMP contains locking functions but they are more akin to Win32 critical sections 
than mutexes in Intel’s implementation. They are local rather than kernel objects so 
they cannot be shared across processes. Also, attempting to acquire an abandoned 
OpenMP lock deadlocks a thread. 
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6. Methodology for Threading Applications 

This chapter presents a methodology for threading applications by stepping through 
the generic development cycle. The goals of each phase in the development cycle are 
achieved by employing one or more components of the Intel Threading Tools. The 
methodology explores usage scenarios to help you speed the development of a 
threaded application. 

Designing a Threaded Application 
The best time to account for threading is at the design phase of application 
development. All threading-related data restructuring and code restructuring changes 
that occur with serial applications being threaded can be accommodated in the design 
phase. This results in a reduced effort in the overall development without the need for 
any redesign.  
A majority of threaded applications first come into being as serial applications and are 
subsequently threaded. In some cases, the serial applications start as prototypes that 
eventually morph into threaded applications. In such a scenario, no time upfront is 
spent on designing correctly for threads, most of the threading effort is spent in 
restructuring and redesigning the serial application.  
This section discusses some of the key issues to keep in mind while designing a 
threaded application. A contrived problem that relates to real world applications is 
used as an example to illustrate the evolution of the design. 

Video Editing Example 
Consider the design of a threaded video editing application. Initial design targets the 
most computationally intensive aspect of the application and further refinements are 
made by exploring functional parallelism that exists in the application.  

Figure 6 shows a stream of uncompressed video that is read in a stream. Special 
effects are applied in real time to the video stream. The processed video stream is then 
stored onto disk. This problem can be particularly performance sensitive if the special 
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. . . . . .
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Figure 6 : Live video editing example 
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effects have to be applied to a live video stream. The time available to process each 
frame of video is finite and should be processed before the next frame arrives. 
Consider an offline-processing model. If this application is built as a serial 
application, then the sequence of actions would be as shown in Code Sample 7. 

 
Code Sample 7: An offline-processing model built as a serial model 

 
In order to thread such a problem, a few pieces of information are crucial to the 
success of the threaded version. If the special effects to be performed on each pixel of 
the video frame are complex, then the function ProcessFrame() is computationally 
intensive.  
Using the VTune Analyzer to profile this application shows that ProcessFrame() 
stands out prominently as a hotspot in both sampling and call-graph analysis. 
Depending on the size of the video frame, the processing of each frame can be divided 
into multiple parts and concurrently processed using threads, translating the problem 
into a data decomposition problem.  

Data Decomposition 
In any threaded design, the first area to target is the most time-consuming area in the 
code. In the video example, assume that the application of special effects to the video 
frame is the most time consuming task, followed by the I/O to read and write a frame. 
The threaded version designed to run on a four-processor system is shown in Figure 7. 
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Figure 7: Threaded version that implements data parallelism. 

In ProcessFrame(), shown in Code Sample 8 the main thread acts as a master 
thread and divides the current video frame into four parts in the setup phase as 
illustrated in Figure 7 (a). Once the data has been set up, the master thread wakes up 
the three worker threads and all four threads, including the master, operate on their 
unique section of the video frame. Once the threads are done processing their share of 
the data, they wait at a barrier for all threads to complete their sections of the frame. 
The master then suspends all of the worker threads and writes the processed frame to 
disk before reading the next available frame from the stream.  
The pseudo-code for the threaded version of ProcessFrame() is shown in Code 
Sample 8. When the master thread returns from ProcessFrame(), it has 
successfully completed the processing of the video frame and continues by writing the 
frame to disk. The caller function still remains the same as shown in Code Sample 8. 
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 struct
 {
    int startx, endx;
    int starty, endy;
    char *data;
 }ThreadData;

 ProcessFrame(char *data)
 {
     ThreadData perThreadData[nThreads];
     //
     //  The master sets the limits for
     //  the region each thread has to
     //  process
     //
     DecomposeData(data, perThreadData,
                   nThreads);
     //
     //  Wakes the worker threads with
     //  information about their data
     //  Each worker thread will also
     //  execute ProcessSection()
     //
     for(int i=1; i < nThreads; ++i)
         WakeWorkerThread(i, perThreadData[i]);
     //
     //  Master does its share of the work
     //
     ProcessSection(perThreadData[0]);
     //
     //  Master waits for all the threads
     //  to complete processing. Each worker
     //  thread goes to sleep after calling
     //  ProcessSection()
     //
     WaitForAllThreads();
 }

 

Code Sample 8: Threaded ProcessFrame() function 

Assuming that there are no serious performance issues, you can estimate the 
performance of the threaded version. Assume that the special effects processing 
accounts for 80% of the time and the I/0 the remaining 20% of the time with the frame 
read accounting for one half the I/O time and the processed frame write the other half. 
Assuming perfect scaling for the threaded portion of the run, then the expected scaling 
performance of this type of application can never be higher than five using infinite 
processors as per Amdahl’s Law.  
Using four threads, the scaling performance can never be greater than 2.5 as the serial 
portion, fully contributed to by the I/O, still accounts for 20% of the serial run and the 
parallel portion 80%/4, i.e., 20% as shown in Figure 8. This is the upper limit for the 
scaling performance when four threads are used. In reality, due to system overheads 
introduced by threading the application, the observed performance can be expected to 
be lower than 2.5. 



Threading Methodology: Principles and Practices 

© 2004 Intel Corporation  Page 30 of 64 

 
Figure 8: The elements are executed in a loop. The I\O thread must complete the 
write of S1 before doing the following read into R1. 

In this case, the serial portion of the application has to be reduced in order to obtain 
better scaling.  

 
Figure 9: Cache line for video data streams 

 
Data decomposition problems can be particularly sensitive to false sharing, as 
illustrated in Figure 9. False sharing occurs when two threads access different data 
elements in the same cache line for reads and writes when run on systems with 
multiple-processors or systems with Hyper-Threading technology. This example 
decomposition is only shown to illustrate how false sharing could easily be introduced 
in the application and not as a recommended approach for data decomposition. 
In order to maintain cache coherency, the cache line is invalidated when one of the 
threads writes to this cache line. This conflict impacts the second thread that is 
accessing elements from this cache line for read only, but has to fetch the cache line 
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again from memory. Depending upon the pattern of usage, this particular problem 
could seriously degrade the performance of an application.  
Consider the setup phase in Figure 7 (a) and examine the Video data 0 and Video data 
1. If the last element of row 1 in Video data 0 and the first element in the first row of 
Video data 1 belong to the same cache line, then a false sharing performance penalty 
occurs when these pixels are processed for write. False sharing can be avoided by 
carefully dividing the work among the threads to cache line boundaries.  

Functional Decomposition 
Better scaling is achieved if additional read and write buffers are present in addition to 
an I/O thread in the thread pool. By overlapping the I/O with actual work, the 
execution time can be considerably reduced. Figure 10 illustrates the new design in 
the form of a flowchart. Here, most of the required I/O is overlapped with the 
computation. This redesign achieves functional decomposition of the I/O task. 
However, in the new implementation, three extra buffers must be created. This 
algorithm improves the performance of the previously threaded version of the 
application. 

R0 R1 S0 S1

M

W2W1W0

I/O

Read first frame into R0

Divide data

M

W2W1W0

Barrier

I/O

Read next
frame into

R1

Write S1

I/O

Rotate Buffers
R1->R0; S0->S1

Write to S0

 

Figure 10: Functional and data decomposition of the video editing example. 
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In Figure 10, the master thread’s control flow is depicted by thick lines. A pool of 
threads is created (number of processors + 1) at start up and one of the threads is 
designated as an I/O thread and another as the master thread. All of the remaining 
threads are worker threads.  
Initially, when the application is invoked, the master thread reads in the very first 
frame into buffer R0. It divides the data taking false sharing into account and wakes up 
the I/O thread to read the next frame into the read buffer R1. While the I/O is being 
done, the master thread wakes up all the worker threads and points them to their share 
of the work. The worker threads write their part of the processing into the S0 write 
buffer. When all threads are done, they wait at the barrier (including the I/O thread). 
Once the processing of the current frame is complete, the master thread rotates the 
buffers by renaming R1 as R0 and R0 as R1 and the write buffers S0 as S1 and S1 as S0 
and suspends all of the worker threads. Now, the next frame that has been read in by 
the I/O thread resides in R0 buffer and the frame that was just processed is in S1. The 
master thread then requests the I/O thread to write out the currently processed frame in 
S1 to disk and commences processing the next frame in R0 by dividing up the work. 
When the I/O thread is done writing, it starts reading the next frame into R1.  
The algorithm presented here is simplified, but for it to actually work, synchronization 
constructs have to be used around the buffers to prevent rotating of the buffers before 
they have been read into. With this approach, the apparent time spent doing I/O can be 
reduced to a fraction of the previous threaded version as it is done asynchronously. By 
assuming that the I/O can be reduced to about 5% of the time it took in the serial 
version of the application, the expected scaling performance from the newer algorithm 
is four using four worker threads on a four-processor system as shown in Figure 10. 
As earlier, it is assumed that perfect scaling is obtained in the special effects 
processing section. By accommodating both task parallelism and data parallelism, we 
were able to improve the scaling performance from ~2.5 to four on a four -processor 
system.  
It is crucial that all aspects are taken into account while designing a threaded 
application. If a person not familiar with the application were to thread the serial 
version of this application, they may have ended with the first threaded version of the 
application. However, if you are also a threading novice, some of the performance 
issues discussed in the section on efficient threading practices could kill the 
performance of any threaded application. It is therefore very important to keep in mind 
the potential pitfalls while designing an application and exploring both functional and 
data parallelism.  

Performance Upper Bound 
Once you have a threaded version of an application, you also need to determine the 
upper limit for scaling in order to understand how close you are to the theoretical 
optimal performance. An application written to automatically spawn threads based on 
the number of processors present in the system may not scale very well in some 
situations with increased number of threads due to very little parallel work or other 
limiting factors.  
In our second version of the threaded application, the profile of the application had 5% 
in serial regions and 20% in parallel regions. However, we know that the background 
thread that does I/O takes ~10% for the read and another 10% for the write. The 
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dissimilar threads (I/O and the special effects) in this scenario take identical amounts 
of time to process their tasks. However, by increasing the number of threads for 
special effects work will have a detrimental effect on the overall scaling performance 
as the special effects processing will require less time than the time taken to perform 
the read and the write in the background.  
Due to synchronization constructs, the worker threads and the master must wait for the 
I/O to be completed. If they all took approximately the same amount of time, a 
CRITICAL_SECTION object that implements spin-wait should be used for 
synchronization to avoid additional system overhead.  
Using spin-wait primitives for synchronization in such scenarios where the threads 
become unbalanced may be detrimental on systems with Hyper-Threading 
Technology. Spin waits use up CPU resources and do not perform any useful work, 
thereby affecting other threads that may be running on the same physical processor. 
The current example shows an optimal solution with four threads and any additional 
threads will create a thread imbalance between the special effects and the I/O threads. 
When this information has been determined, the application can dynamically increase 
the number of threads when more processors are available, but stop once the scaling 
performance upper bound has been reached. The next section presents a methodology 
for threading existing serial applications and applying some of the principles discussed 
here. 

Serial Application to Threaded Application 
The methodology described here for threading uses a generic development cycle to 
step through the various stages of development. Knowledge of Intel’s tools and how to 
effectively use them in a development cycle can be applied appropriately for the 
design and development of any threaded application. We have already discussed the 
various phases of the generic development cycle. In this section, we will examine each 
phase in detail and which tools aid in accomplishing the objective of the phase. 

Analysis 
The goal of the analysis phase is to prepare a baseline measurement of the 
performance of the serial application and determine the regions of potential 
parallelism in the application. To measure the performance of a serial application, use 
a representative workload (or workloads) that exercises most of the code paths being 
analyzed. The workloads that are selected should be as small as possible to keep the 
memory footprint and the application runtime low. The primary tool that is used in 
this phase is the VTune Performance Analyzer. Figure 11 shows the analysis stage 
captured as a flowchart. 
Once a workload or workloads have been selected, the application is run on the 
workload as sampling and call graph statistics are collected using the VTune analyzer. 
The critical paths in the call graph are analyzed and the most time consuming path is 
selected. The selected path is then examined by looking at the call sequence and the 
most appropriate functions (node) for parallelism is identified. 
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Figure 11: Analysis phase 

 
Call graph analysis is recommended because sampling information may not be 
suitable for all types of applications. Sampling data sometimes have flat profiles and 
picking the right level may not be possible or the hotspots may point to the functions 
that results in the most number of calls, but may not be at the right level in the code 
path for threading. To get the right perspective, call graph data has to be used even 
though it perturbs the execution time due to instrumentation.  
Once you have identified the regions of code in your application most suitable for 
parallelization, you need to determine the type of parallelism to implement. Most of 
the important decisions that you need to make are made in this phase.  

Design  
The design phase is where the type of parallelism being implemented is examined and 
necessary changes made to the design to accommodate a threading model. If the 
parallelism being implemented can be accomplished by threaded library functions 
already included in Intel MKL or the Intel IPP, then you can eliminate some of the 
steps involved in the design process.  
A majority of the effort in the design phase involves the restructuring of data and code 
to make it optimal for performance. In order to restructure data or code, all the global 
data accesses by threads have to be identified first. Without any tools, it can be a very 
tedious effort, especially for medium- and large-scale applications, as you must go 
through the call sequence of the thread and examine every memory access for a global 
memory access.  
Use the Intel threading tools to simplify the task of restructuring data for optimal 
threaded performance. 
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Figure 12: Flowchart of the initial design methodology 

The general methodology for the design phase is shown in Figure 12, and can be 
summarized as follows: 
1. If you are already an expert in threading applications, do a brief analysis to 

determine the sections of your application that are suitable for threading.  
If you are not an expert in threading applications, you will need to spend a 
considerable amount of time to understand the application and identify regions in 
your code that are good candidates for parallelization. 

2. Inspect the code and try to determine if any of performance library functions can 
be used in your application. For example, if the application being developed has 
to solve a linear system of equations in the end, it may be beneficial to use calls 
from the Intel MKL that are threaded with OpenMP to immediately get the 
benefits of threading. However, additional work has to be done to determine the 
memory conflicts and design for data restructuring, if required.  

3. If Intel MKL/Intel IPP functions cannot be used, do the following: 
a. Choose a type of decomposition.  
b. Use the Thread Checker and OpenMP to locate memory conflicts. See the 

Thread Checker documentation for more details. 
c. Restructure your data according to specific performance issues, as described 

in the Data Restructuring section. 

Decomposition Types 
This section describes decomposition type issues in more detail. The decomposition 
type determines the type of data restructuring, if required. 
Functional Decomposition 
To identify memory conflicts for a functional decomposition problem, use OpenMP in 
conjunction with Intel compilers and the Thread Checker to quickly identify all of the 
memory conflicts in the identified code path. This section discusses shortcuts that help 
you catch all the global memory accesses as quickly as possible.  
To prepare the code path you want to thread, do the following: 
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• Encompass the code path in a function  
• Use OpenMP pragmas around the created function, as shown in Code Sample 9. 

 
Code Sample 9:  OpenMP is used in this example to detect memory conflicts. 

By surrounding the function to be threaded with #pragma omp sections, the 
OpenMP runtime library creates the default number of threads for the system and 
executes the function call FunctionThread()twice in parallel. Use the Thread 
Checker on this sample, to identify the memory conflicts that arise with multiple 
threads accessing global data. These errors can then be examined carefully for any 
data restructuring that may be required.  
The task that could take anywhere between a few hours to days can now be 
accomplished in a matter of minutes with the use of Intel Threading Tools. Use 
OpenMP pragmas to identifying the memory conflicts only.  During the 
implementation phase, remove these pragmas and replace them by the appropriate 
threading calls of your choice. 

Data Decomposition 
OpenMP is an ideal candidate for data parallel problems. Use it for both design and 
implementation to solve data decomposition problems. You can add OpenMP 
incrementally to an existing application, usually without significant recoding. With 
OpenMP, your original serial code is left largely intact and maintainable. 
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Figure 13: A flowchart for data parallelism design 

 
OpenMP compilers are available for most operating systems. Non-OpenMP compilers 
simply ignore these pragmas and compile the original serial code. The usage model 
for data decomposition problems is shown in Figure 13.  
Use an iterative approach to remove memory conflicts with help from the Thread 
Checker until no conflicts are found. The use of shared or private clause is shown here 
to highlight the usage model and not imply these are the only clauses that can or 
should be used for data decomposition problems.  

Data Restructuring  
The main purpose of data restructuring is to avoid the problems of excessive 
synchronization and false sharing. This section describes these problems in detail and 
proposes solutions for dealing with them. 

Excessive synchronization 
This section discusses the problem of excessive synchronization and suggests a way to 
overcome this problem with data restructuring. If global data accesses are found 
throughout the profile of a thread, each of these global data accesses must be protected 
by synchronization constructs. This could lead to the accumulation of system 
overhead due to excessive synchronization that could result in degraded performance. 
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Figure 14: This bar illustrates the time spent by a thread. The green sections indicate 
time spent on parallel work. Red sections indicate time spent accessing global data, 
that is, on synchronization. While some overhead is expected, excessive 
synchronization degrades performance. 

Figure 14 shows a profile of a thread with many global data accesses in red and all the 
parallel work in green. All shared global data access must be protected by 
synchronization constructs to prevent data races from occurring in the application. As 
shown in the figure, many global data accesses that occur close to each other can be 
merged into one larger synchronization point, thereby eliminating many 
synchronization points.  
If there are two global data accesses, and if the data that is accessed second is not 
updated between the two accesses, then the second access can be made immediately 
after the first. By protecting these two data accesses with synchronization, two 
synchronization points can be reduced to one. Also, large critical sections that occur in 
the code may be potential candidates for a local copy of shared data for each thread if 
the data dependencies allow for such an optimization.  
By merging global data access that occur close to each other and by making local 
copies of global data, you can significantly improve the scaling performance of your 
threaded applications. Also, those global data accesses that occur as a read-only 
operation do not require synchronization constructs. By observing these simple rules 
of data restructuring, your application can benefit with significant scaling performance 
boost. 

False Sharing 
Another issue avoided by data restructuring is the problem of false sharing. Two 
threads can use unique data elements on the same cache line for read and write. When 
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one of the threads writes to this cache line, the same cache line referenced by the other 
thread is invalidated. Any new references to data in this cache line by the second 
thread result in a cache miss and the cache line will have to be loaded again from 
memory. This is known as false sharing and if this type of activity is inadvertently 
introduced into the application, it could lead to severe performance degradation. 
The problem of false sharing usually manifests itself when applications use global 
state arrays to maintain information about each thread, as is illustrated in this section 
with a short code example as shown in Code Sample 10. It is best to address the 
problem of false sharing during the design phase. However, this problem can easily be 
identified during the tuning stage using the VTune Performance Analyzer.  
When thread functions are implemented as shown in Code Sample 10, the global 
variable sumLocal causes false sharing as both threads write to this array and their 
distinct elements lie on the same cache line. Each time thread_1 writes to its 
element in the cache line, the cache copy of the same line for thread_2 is 
invalidated. The variable thread_2 now has to reload the cache line containing the 
variable into cache before it can write its element into the array, which in turn 
invalidates the copy owned by thread 1.  

 
Code Sample 10: An example of false sharing 

 
This example is a particularly extreme case of false sharing resulting in severe 
performance degradation. In order to overcome this problem, padding can be added 
around the data of each thread to ensure that elements accessed by different threads all 
lay on separate cache lines.  
The other solution is to use a local copy from stack for all updates and then perform a 
global update that reflects these updates to the global entity. 

Implementation 
Once all design considerations have been addressed, the application can be threaded 
by implementing the identified parallelism with the chosen threading model. The 
recommended threading model depends on the type of decomposition: 
• For data decomposition problems, OpenMP is recommended.  
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• For functional decomposition, explicit threading is recommended since there is 
limited support from OpenMP. 

Functional Decomposition 

 
Figure 15: Implementation of functional parallelism 

The flowchart shown in Figure 15 depicts one sample implementation methodology 
rather than all possible scenarios with functional decomposition. This sample 
methodology can be applied to the majority of functional decomposition problems. It 
is extremely useful for the class of problems able to use thread pools to manage the 
threading aspect and distributing the available tasks among the inactive threads. The 
steps of the methodology can be summarized as follows: 
1. Encapsulate the code path meant for functional decomposition in a function and 

assign a thread to this task.  
2. Use the Thread Checker to check your application for memory conflicts.  
3. Examine all reported memory conflicts for the restructuring considerations. 
4. Ensure that any remaining global data accesses are protected by synchronization 

constructs. 
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Data Decomposition 

 
Figure 16: Flowchart depicting data decomposition methodology 

The data decomposition methodology relies heavily on OpenMP for implementation. 
OpenMP can be used to express data parallelism quite effectively. Once the 
implementation of the application has commenced, different sections of the 
application can be easily threaded incrementally with the use of OpenMP. 
The following section takes a sample application and steps through this process of 
implementing with OpenMP. Consider the example of computing the value of pi. The 
serial code is shown in Code Sample 11.  

 
Code Sample 11: Calculation of pi 

Computation of pi is an example of numerical integration and the accuracy of the 
computed value increases with the number of iterations. This example is an extremely 
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parallel problem and is simple enough to follow the implementation methodology. 
Some knowledge of OpenMP is required to understand this example. 
In order to compute the value of pi, this code performs a function evaluation 
numIterations times. If you use the VTune analyzer on this program, a hotspot 
would point to the for loop.  
Use the methodology described in Figure 16, to implement a threaded version of this 
code using OpenMP. 
Encapsulate the for loop with an OpenMP parallel region. By doing this, the for 
loop will be executed in parallel using the default number of threads that the OpenMP 
runtime creates.  

 
Code Sample 12: Modified version of code to generate pi. In this instance, OpenMP 
pragmas are used. 

Code Sample 12 shows the modified source with the OpenMP constructs. 
You can use the Intel® Thread Checker to detect memory conflicts in the modified 
source code. To do this, you first need to compile your modified source code using the 
Intel compiler with the /Qopenmp option.  
 

 Tip For complete details on the Thread Checker, consult Getting Started with the Intel®  
Thread Checker guide or the online help included with the product. 
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The modified source for this program with the memory conflicts accounted for is 

shown in Code Sample 13. 

 

Code Sample 13: Modified numerical integration example threaded with OpenMP. 

This methodology is applied until all of the reported errors are addressed. In the 
implementation, an omp for work sharing construct enables rapid threading.  

Debugging & Testing 
Once you thread your application you must check it for correctness by verifying 
against the results reported by the serial version.  In most situations, the debug and 
testing stages go hand in hand. 
In this phase, you debug all the inconsistencies detected in the testing phase. This 
forms an iterative process you continue until the results obtained are verified to be 
consistent with the serial application run.  
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Debugging Large Applications 

 
Figure 17: Debug methodology 

Figure 17 shows the proposed methodology to follow while debugging a large 
application. A release build with debug symbols has a shorter run time and the 
additional benefit of not having to compile the application with source 
instrumentation. Using a release build is particularly useful for applications that take 
many hours to build. Once the memory conflicts have been identified, the 
methodology proposes source instrumentation of only the affected modules that are 
reported by Intel Thread Checker to contain errors.  
Using the /Qtcheck option, source instrumentation enables the extraction of 
information about the variables that cause these conflicts. This drill down 
methodology saves considerable time in the debug process.  
Figure 18 shows a sample screen shot of Thread Checker that shows memory conflicts 
occurring in an application. Double-clicking each error gives you the ability to 
identify the source lines that caused the error.  

 
Figure 18: Sample display of a race condition error found by the Intel® Thread 
Checker. 

The errors indicate the two variables x and sum. These variables are global to the 
threads and cause conflicts when the parallel version is run. The variable is declared as 
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private and the variable sum is declared as a reduction to eliminate the conflicts. By 
correcting these conflicts, you can achieve an error free implementation of the 
program. 

Evaluating Third Party DLLs 
The second use of a debug step is for evaluating third-party DLLs that offer useful 
functionality. With the methodology shown in Figure 19, you can evaluate the DLL 
for thread safety and based on the outcome of this step, decisions can be made to use 
or discard the DLL’s functionality. 
  

 
Figure 19: Testing DLLs for thread safety. 

To test a DLL for thread safety, do the following: 
1. Write a short test driver that encapsulates calls to DLL functions in OpenMP 

pragmas. 
2. Create an Activity using the Intel Thread Checker to run your modified 

application to determine if any conflicts are reported inside the DLL.  
3. If no errors are reported, then the DLL is safe for use in a threaded application.  
Code Sample 14 shows a code snippet that uses the OpenMP section pragma to 
accomplish the objective of determining if a DLL is thread-safe or not. The task of 
writing a small test application with wrappers around all of the functions that are of 
use should be an excellent investment if the outcome of this effort determines the 
extent of thread safety of the DLL. The caveat to this approach is that when DLLs use 
OpenMP and source is not available for the DLLs, then the Thread Checker may 
report false positives.  
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Buffer data[2];
. . . . . . .
#pragma omp parallel sections
{

 #pragma omp section
     DllFunc( &data[0] );

 #pragma omp section
     DllFunc( &data[1] );
}

 

Code Sample 14: Use of OpenMP SECTIONS to determine DLL thread safety 

Testing an application involves verifying the correctness of the result of the threaded 
application with that of the serial run. If no errors are reported by the Thread Checker 
at this stage, you can safely assume that most of the runtime race conditions have been 
identified and fixed.  
If the threaded run’s results match that of the serial run, then the application is 
consistent.  

Tuning for Performance 
Once your threaded application is correct and bug-free, you can focus on tuning your 
application for optimal performance. By this stage in the development process, most 
of the time consuming optimizations have been addressed in the data restructuring 
section. This section attempts to apply the heuristics or rules outlined in Efficient 
Threading Practices to prepare the threaded application for optimal performance.  
Use the following tools to identify potential performance problems: 
• Thread profiler  
• VTune Performance Analyzer  
The following sections examine the methodology to be used with both tools. 

Using OpenMP Thread Profiler 
Use the thread profiler within the VTune analyzer to analyze OpenMP applications for 
performance. In order to view performance statistics collected for an OpenMP 
application, build your application with the /Qopenmp_profile option to link in 
the instrumented runtime libraries.  
Alternatively, you can build your application with the /Qopenmp option, but run your 
application from within the VTune environment for runtime replacement of the 
OpenMP library with the instrumented version.  
If you build your application with the /Qopenmp_profile, it can be run from the 
command line. Upon completion a .gvs file is generated that can be viewed from 
within the VTune environment.  
Thread profiler enables you to view data from multiple runs and to compare them at 
the same time. It supports many views that show a performance summary of the 
application or thread-specific breakdown.  
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Since OpenMP is structured, the application can also be viewed by region, for 
example, parallel, serial, etc. 
Figure 20 (a) shows a sample screen shots of Activity results in the thread profiler’s 
Summary view for an application with thread imbalance. Figure 20 (b) shows results 
for the corrected application. 

a)    

1 Thread1 Thread1 Thread1 Thread

2 Threads2 Threads2 Threads2 Threads

4 Threads4 Threads4 Threads4 Threads

 

b)    

1 Thread1 Thread1 Thread1 Thread

2 Threads2 Threads2 Threads2 Threads

4 Threads4 Threads4 Threads4 Threads

 

Figure 20: (a) Screenshot of Thread profiler showing load imbalance (b) Corrected 
example without the imbalance. 

In this example, the scaling obtained by the imbalanced case in  Figure 20 (a) for two 
and four threads respectively are ~1.4X and ~2.1X, respectively.  
The Summary view displays color-coded time categories including: sequential, 
sequential overhead, synchronized, locks, barriers, imbalance, parallel overheads, and 
parallel.  
The manual Developing Multithreaded Applications: A Platform Consistent 
Approach, available on the Threading Tools Web site, provides specific advice for 
avoiding threading pitfalls such as load imbalance. 
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Figure 21: Sample flowchart of advice for dealing with load imbalance. Useful advice 
related to avoiding threading pitfalls is available in the manual Developing 
Multithreaded Applications: A Platform Consistent Approach. 

By applying the advice for load imbalance in the manual, the problem with imbalance 
shown in  Figure 20 (a) showed dramatic improvement in performance. Figure 20 (b) 
shows the same application’s performance after applying the advice given for the 
problem encountered. The scaling obtained after the fix, for two and four threads were 
~1.8X and ~2.9X, respectively. Figure 21 shows a typical flowchart for dealing with 
load imbalance. 

Using Win32 Thread Profiler 
This section presents information on the type of  information that is presented by 
Thread Profiler for Windows API and how  it will help you identify and locate 
bottlenecks that are limiting the parallel performance of your multi-threaded 
application. Thread Profiler instruments the application inserting calls to statistics 
gathering functions in the Thread Profiler library.  Thread Profiler performs program 
execution flow and critical path analysis to determine whether any threading delay in a 
multithreaded application will affect the overall execution time. The critical path is the 
longest execution flow in the application. For more detail about the critical path and 
critical path analysis, please refer to the online documentation for Thread Profiler. 
For your application to be able to be instrumented under VTune, it has to be linked 
with the /fixed:no option. Upon successfully instrumenting and running your 
application within VTune using Thread Profiler, you should see Activity results in the 
Thread Profiler viewer. You are now ready to identify and locate bottlenecks that are 
limiting the parallel performance of your application 
Figure 22 shows a sample screen shot of Thread Profiler’s Critical Path view for an 
application with a main thread and 4 worker threads. This particular profile shows 
some serial impact time (orange), where only one thread is executing while preventing 
other threads from running as it holds a resource other threads need, some parallel 
impact time (green) and certain amount of overhead (yellow). 
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Figure 22: Critical Path View showing the data collected for the critical path 

In order to find more detailed information, double clicking on the critical path will 
take you to the Profile view. Figure 23 shows the Threads view selected in the Profile 
view.  This view gives information on all the threads that were in the system, their 
time spent on the critical path and their lifetimes. The lifetimes are shown by the green 
translucent colors. The dark green halos are the time spent by each thread on the 
critical path and the colors show the state of each thread while on the critical path. 
 

 
Figure 23: Threads view in the Profile View Tab 

With the Threads view, you can deduce if the threads are balanced and if any 
algorithmic changes are necessary. Another view that is extremely useful is the 
Objects View in the Profile View tab. This shows all of the synchronization and 
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threading objects used by the application and the impact of any of these objects on the 
execution time. A sample screenshot of the Objects View is shown in Figure 24. 
 

 
Figure 24: Objects view in the Profile view tab showing all of the objects used by the 
application 

In this sample application, there are two major objects in use that affect the execution 
time. A critical section object that has the most impact time and a Fork-Join object ( 
WaitForMultipleObjects) that has minimal impact time. You can now group objects 
with threads to determine which of the threads in the application are impacted by these 
synchronization objects. This view grouping Objects with Threads is shown in Figure 
25. 
 

 
Figure 25: Grouping View using Objects for first level grouping and Threads for 
second level grouping. This view shows which threads were impacted by which 
synchronization object 
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It is clear from Figure 25 that the Critical section object 11 impacts the execution of 
threads 2, 3, 4 and 5.  It is possible to view the source line for this instance by right 
clicking on the screen and accessing the pop-up menu. In addition to viewing 
performance bottlenecks, Thread Profiler also gives a high level view of thread 
activity in the application. This requires certain advanced features, namely Thread 
activity and Transitions to be turned on. However, by enabling these advanced 
features, your application may slow down due to the overhead encountered to collect 
additional information. Figure 26 shows a sample screen shot of such a view. 
 

 
Figure 26: Timeline view showing Thread activity and critical path transitions 

The timeline view shown in Figure 26 clearly shows when threads are blocked (light 
green) and when they are active (dark green). Hovering the mouse over the “yellow” 
lines gives you information on the synchronization objects that cause a thread to run 
and other threads to block. This shows the power of the tool and how it helps analyze 
explicitly threaded applications using Win32 API. 

 

Using the VTune Performance Analyzer 
The VTune Analyzer is a very powerful tool that analyzes your application using a 
combination of technologies. You can use sampling to collect runtime information 
about your system based on special-purpose event counters built into the 
microprocessor. Information about all the software running during the collection 
period, is recorded and can be analyzed for various data such as hotspots, instructions 
retired, mispredicted branches, cache misses, memory aliasing conflicts, stalls, and 
much more. 
You can use call graph analysis to collect information about the call tree, number of 
functions calls, function execution time, function wait time, and to identify the most 
time consuming path, also called the critical path. To do call graph analysis, the 
VTune Analyzer instruments the software in memory so that it can collect function 
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information. A combination of sampling and Call Graph can be used to analyze 
parallel applications. 
The VTune Analyzer is complimentary to the Intel Thread Checker and thread 
profiler. Table 2  highlights some of the key differences among the tools. See the 
VTune Analyzer’s product documentation for complete usage instructions and details. 

 

 

 

Tool or 
VTune™ 
Performance 
Analyzer 
feature 

Sampling Call Graph Thread Checker Thread Profiler 

Typical 
runtime 
performance 
overhead 

1-2%. 
Depends upon 
the sampling 
frequency. Can 
be much lower. 

5-25%. 
Depends upon 
the number of 
function calls 

50-500% or more. 
Depends upon the 
amount of memory 
accessed. 

5-25%. Depends upon the 
number of OpenMP* 
pragmas. 

What software 
can be 
analyzed? 

All running 
software. 

The software 
associated with 
the one process 
under 
examination. 

The software 
associated with the 
one process under 
examination. 

The software that contains 
OpenMP pragmas. 

Setup 
required 

None. Symbols 
and source 
required to 
drill-down 

Link option 
/fixed:no 

Link option 
/fixed:no. 
Compiler option 
/Qtcheck 
required for 
detailed analysis.  

Compiler option 
/Qopenmp_profile for 
stand-alone profiling. 
/Qopenmp for analysis 
within the VTune™ 
Performance Environment 

What data is 
collected? 

Processor-
focused data 
such as 
instruction 
pointer and 
event counters. 
Hundreds of 
events are 
possible. 

Function timing 
and call tree 
data. 

Threading-focused 
data such as 
synchronization, 
parallel constructs, 
and memory 
accesses. 

Timings for parallel and serial 
transitions and locks, 
barriers, and other 
synchronization occurring at 
OpenMP pragmas. 

Table 2: Tools comparison. 

Using Call Graph Analysis to Analyze Load Balancing 
Load balancing threads is one of the most basic parallel performance optimizations. 
The best case is when all processors are kept busy making active progress on the 
workload; the worst case is when one or many processors are sitting idle waiting for 
other threads to finish. The detection of load balancing requires that you know which 
threads, by design, are supposed to consume the same amount of time.  
The VTune Analyzer presents the information to evaluate load balancing in both call 
graph and sampling views. When using call graph, the call tree’s self-time should be 
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reasonably similar to that of other threads for proper load balancing. Not all threads in 
the system need to be balanced; only the ones that your design specified.  
In Figure 27, the two threads identified should consume the same amount of time but 
do not. Therefore, these two threads are not balanced. 

Thread 
Imbalance
Thread 

Imbalance

 

Figure 27: A screen shot of the call graph view of the VTune™ Performance 
Analyzer screenshot showing thread imbalance. 

Using Sampling Analysis to Analyze Load Balancing 
Sampling is another method that can be used to evaluate thread balancing. Balanced 
threads should contain approximately the same number of clocktick event samples and 
the samples should be evenly distributed among the processors.  
In general, use the following steps to analyze load balancing using the sampling data 
collector of the VTune Analyzer. For more detailed usage instructions, see the online 
help. 
1. Before performing the thread analysis, be sure to select only the threads contained 

in your process by clicking the Process button on the toolbar. The VTune 
analyzer now displays all the processes that ran on your system when the 
sampling data collection took place. 

2. Select one process on the graph, and click the Thread button to display the 
threads for the selected processes. 

3. Click the Click Show/Hide CPU Information button to see the samples collected 
on each processor.  

Figure 28 is a screenshot of a sampling session that shows four threads. Assume that 
the four threads should consume equal amounts of time because that is how the 
software was designed. But as you can see, the top horizontal bars are far shorter than 
the bottom two. More samples were collected in the bottom two threads meaning that 
they took longer to execute. These four threads are not load balanced. 
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Figure 28 Screenshot of the sampling view showing thread imbalance 

An interesting fact to note in Figure 28 is that the samples are somewhat evenly 
distributed among the processors. This means that even though the threads take 
different amounts of time to execute, the execution is evenly distributed among the 
available processors. 
When the threads contain a different number of samples or when the coloring of the 
CPUs indicates that at least one processor was more active than others, a load 
imbalance has occurred and should be investigated. 
Unfortunately, it is possible to be tricked into thinking that the threads are balanced 
when they really are running in serial. When multiple threads run for similar amounts 
of time on different processors, but in serial, the graph shows what appears to be a 
balanced situation. To avoid this confusion, you must know that the threads actually 
ran in parallel at the same time. If this situation did occur, it would very likely happen 
only if processors are sitting idle however the VTune analyzer can quickly and easily 
detect idle time. 

Using the VTune Performance Analyzer to Detect Idle Time 
Time-based sampling (TBS) shows idle time by placing samples in the operating 
system’s idle loop and by collecting more samples per second than expected. Figure 
29 shows samples collected in module processr.sys, which is the module that 
contains the operating system’s idle loop. 
When samples are collected in processr.sys, you can be certain that idle time 
exists. You can also see in Figure 29 that many samples were located in Ring 0, the 
privilege level reserved for the operating system, again indicating the idle loop.  
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Privilege level 

 

Figure 29: VTune Performance Analyzer screenshot showing idle time 

Tracking Overhead 
Overhead is a nightmare for performance whether or not you are using threads. 
Overhead can be caused by other processes running in the system, other modules 
running in your process, or by inefficient code running in your module. The VTune 
Analyzer displays the potential overhead caused by other processes running in the 
system on the Process View. In Figure 30, samples collected in other processes are 
overhead.  

 

Figure 30: VTune Performance Analyzer screenshot showing overhead 

Overhead can also be detected in the Module View as shown in Figure 31 where a 
bunch of samples were collected in a driver. Without knowledge about what is 
expected to occur, you can’t be 100% certain that these samples are overhead. 
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However, anytime samples occur outside your application, further investigation is 
warranted.  
 

 
Figure 31: Hotspots by module 

Overhead can also be contained within the application. Again, it is very important to 
have a good understanding of what the application is supposed to be executing or you 
may overlook a significant performance problem. In Figure 32, the hotspots located in 
the application are shown. 

 
Figure 32: Hotspots by function. 

 
Overhead can be seen as samples collected in the _ftol(), which converts a 
floating-point number to an integer. The _ftol() can always be treated as overhead, 
and just by using the Intel C++ Compiler and compiling for the Pentium 4 processor 
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or newer, you can completely remove this overhead. In other cases, you must redesign 
pieces of your application to remove or reduce the overhead. 

Synchronization, Overhead, Idle Time, and Context Switches 
Synchronization, overhead, idle time, and context switches are related. When you 
suspect that the overhead of synchronization may be a performance issue due to the 
detection of overhead and idle time in conjunction with the information that you 
already know about your application and its use of synchronization objects, using 
other features of the VTune Analyzer, beyond simple sampling and call graph tracing, 
may help to sort things out. Using the counter monitor data collector, context switches 
can be tracked as shown in Figure 33. Locations of high context switches may indicate 
synchronization overhead.  

 
Figure 33: Counter monitor data help you understand the cause-and-effect 
relationship between the computer's subsystems and your application. 

In summary, the VTune Analyzer and the thread profiler plug-in provide many 
powerful features that can be used to determine if threading performance is as 
expected. The analyzer is the only tool that helps you understand certain upper limits 
for any threaded application, especially data-parallel applications. For example, by 
keeping track of the bus utilization of a two-threaded application when run on a four-
way system and comparing against the utilization for a four-threaded run, you can map 
utilization trends and project the number of threads with which the bus saturates. This 
information can give you insight on an upper limit for the number of threads 
applications can effectively use on the four-way system. 
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7. Architecture-Specific Tuning for Hyper-
Threading Technology 

Hyper-Threading Technology enabled processors contain multiple logical processors 
per physical processor package. The state information necessary to support each 
logical processor is replicated while sharing and/or partitioning the underlying 
physical processor resources. Given that processor resources are generally 
underutilized by most applications, processors with Hyper-Threading Technology 
enabled can improve overall application performance. Multiple threads running in 
parallel can achieve higher processor utilization and increased throughput.  
The first step in multithreading an application for systems with Hyper-Threading 
Technology is to follow the threading methodology for designing, implementing, 
debugging, tuning and validating performance on Symmetric Multiprocessor (SMP) 
systems. With a few exceptions, the general approach is the same. Multithreaded 
applications that perform well on SMP systems will generally perform well on 
systems with Hyper-Threading Technology. But do not confuse Hyper-Threading 
Technology enabled processors with SMP systems. Each processor in an SMP system 
has all its physical processor resources available and will not experience any resource 
contention at this level. Well-designed multithreaded applications perform better on 
SMP systems and should be the upper bar on your performance expectations when 
running on Hyper-Threading Technology enabled processors.  
The second step is to review the Intel® Pentium 4 and Intel® Xeon™ Processor 
Optimization Manual and the white papers on Hyper-Threading Technology available 
on Intel Developer Services Web site <www.intel.com/IDS>. The best way to design, 
implement and tune for Hyper-Threading Technology enabled processors is to avoid 
known pitfalls. 

Designing  
Design applications with flexibility for effective use of processor and system 
resources. For example, multithreaded applications may detect the number of physical 
processors available in a system and then create a number of threads equivalent to that 
value.  
Intel Pentium 4 and Intel Xeon processors provide information on the different levels 
and sizes of cache available for the particular processor. Since the cache configuration 
is not specified by the Intel NetBurst® microarchitecture, this processor resource can 
vary among Intel processor products. By designing in flexibility for cache levels and 
size, applications can dynamically optimize data distributions and computations in 
order to maximize usage of cache. 
When designing for Hyper-Threading Technology enabled processors, be aware that 
architectural state is the only resource that is replicated. All other resources are either 
shared or partitioned between logical processors.  
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A shared resource is a resource that any logical processor can fully utilize but access is 
shared with all other logical processors. This can result in resource contention. 
Although a resource may be shared, individual use of such resources may be tagged 
for a specific logical processor.  
Resource contention can result in stalling a logical processor waiting on the 
availability of a tagged resource. For resources that are partitioned, a logical processor 
can only utilize its allocated portion of the resource. If one logical processor is not 
using its portion of a resource, that share of the resource is still not available for 
another logical processor to use.  
The cache hierarchies for both instructions and data are shared. Write-combining store 
buffers are shared. All of the execution unit resources are shared. But the load/store 
buffers, the table lookup buffers, instruction queue to the execution units, and the 
instruction reorder buffer are partitioned. Instruction decoding and delivery are shared 
equally in a round-robin fashion as long as no logical processor instruction queue 
stalls. If any logical processor stalls due to a full instruction queue to the execution 
units, other logical processors can take advantage of the available resource to continue 
decoding/delivering additional instructions. 
A Hyper-Threading Technology enabled processor does not increase the data cache 
size but supports additional logical processors. If an application has been optimized 
for a specific cache size and number of physical processors, then the performance is 
likely to degrade on a Hyper-Threading Technology enabled processor system. This is 
because each logical processor would be trying to fully utilize the cache resulting in a 
cache resource contention. However, by designing in the flexibility to detect the 
number of logical processors as well as physical processors, cache levels, and cache 
size, you can optimize your application for peak performance on SMP systems as well 
as Hyper-Threading Technology enabled processor systems. 

Implementing  
The best way to design, implement, and tune for Hyper-Threading Technology 
enabled processors is to avoid known coding pitfalls. Implementing an application for 
Hyper-Threading Technology generally extends beyond just the application to include 
components or libraries provided by third-party vendors. Any implementation should 
use components or libraries that are thread-safe and designed specifically for Hyper-
Threading Technology enabled processors. Use operating system (OS) and/or 
threading synchronization libraries instead of implementing application-specific 
mechanisms such as spin-waits. The OS and threading libraries are likely to already be 
optimized for various processors. Applications can automatically take advantage of 
the enhancements either through re-linking and/or through the use of dynamic link 
libraries. 

Debugging 
There are no unique debugging techniques for multithreaded applications running on 
Hyper-Threading Technology enabled processors. The same debugging techniques 
and tools available for SMP systems should be used when debugging a multithreaded 
application on Hyper-Threading Technology enabled processors. 
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Tuning 
For best performance, applications should first be tuned for the Intel Pentium 4 
processor before tuning for Hyper-Threading Technology enabled processors. If 
performance is not as good as expected on systems with Hyper-Threading 
Technology, the next step is to review the latest Intel® Pentium® 4 and Intel Xeon™ 
Processor Optimization Manual as well as whitepapers on Hyper-Threading 
Technology available from the Intel Developer Services Web site. Look for known 
Hyper-Threading Technology optimization opportunities and coding pitfalls that may 
still be part of your application. 
If performance is still not as expected, the next step is to narrow the scope of interest 
to a Hyper-Threading Technology enabled processor performance issue. Gather 
performance results for each of the following configurations: 
• a single-processor system with the uni-processor kernel 
• a single-processor system with a multiprocessor kernel  
• a single processor system with Hyper-Threading Technology enabled and a 

multiprocessor kernel  
• a dual processor system with an multiprocessor kernel 
Comparing these performance results, verify that the performance degradation is not a 
multiprocessor issue. Verify that the dual Pentium 4 processor system performance is 
as expected and exceeds single Pentium 4 processor without Hyper-Threading 
Technology enabled. If not, or if the performance gain is very low, then focus tuning 
effort on the standard SMP tuning methodology.  
Next, verify that the single Pentium 4 processor with multiprocessor kernel degrades 
less than 5% versus a single Pentium 4 processor uni-processor kernel. Note that 
single threaded (or effectively single-threaded) applications may actually degrade due 
to multiprocessor kernel overhead not required for uni-processor kernels.  
Finally, verify that the performance on Hyper-Threading Technology enabled 
processors degrades versus single Pentium 4 processor with uni-processor kernel. 
Assuming reasonable SMP performance but degraded performance on Hyper-
Threading Technology enabled processors, the next step is to root-cause the 
performance degradation using the Intel VTune Performance Analyzer. 
Use the Intel Tuning Assistant of the VTune Analyzer to identify issues and obtain 
tuning advice. The Tuning Assistant uses an architecture-specific tuning methodology 
to guide you to useful processor event data collection and interpretation.  
In addition to the data collected for Hyper-Threading Technology enabled processors, 
collect the same data on single Pentium 4 processor systems without Hyper-Threading 
Technology enabled and dual Pentium 4 processor systems. Comparing the time in 
clockticks between systems can narrow the scope of where processor time is being 
spent. Then it is a matter of understanding what is causing the difference in clock ticks 
between the various platforms using the other recommended processor events. 

Validation  
There are no unique performance validation techniques for multithreaded applications 
running on Hyper-Threading Technology enabled processors. The same validation 
techniques, tools, and workloads available for SMP systems should be used when 
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validating performance of a multithreaded application on Hyper-Threading 
Technology enabled processors. 

Known Pitfalls 
There are several known pitfalls that you can encounter when tuning an application for 
Hyper-Threading Technology enabled processors. These pitfalls are covered in detail 
in the Intel® Pentium 4 and Intel Xeon™ Processor Optimization Manual and the 
whitepapers on Hyper-Threading Technology available from the Intel Developer 
Services Web site. Short descriptions of each of the known issues are discussed in the 
following sections: 

Spin-waits 
 
A spin-wait loop is a technique used in multithreaded applications whereby one thread 
waits for other threads. The wait can be required for protection of a critical section, for 
barriers or for other necessary synchronizations. Typically the structure of a spin-wait 
loop consists of a loop that compares a synchronization variable with a predefined 
value as shown in Code Sample 15. 

 
Code Sample 15: Structure of a fast spin-wait loop. 

On a processor with a super-scalar speculative execution engine, a fast spin-wait loop 
results in the issue of multiple read requests by the waiting thread as it rapidly goes 
through the loop. These requests potentially execute out-of-order. When the processor 
detects a write by one thread to any read of the same data that is in progress from 
another thread, the processor must guarantee that no violations of memory order 
occur. To ensure the proper order of outstanding memory operations, the processor 
incurs a severe penalty. You can significantly reduce the penalty from the memory 
order violation by inserting a PAUSE instruction in the loop. 
If the spin-wait begins before a thread updates the variable, then the spinning loop 
consumes execution resources without accomplishing any useful work. To prevent the 
resulting waste of processor cycles that a waiting thread may use, insert a call to 
Sleep(0). This enables the thread to yield if another thread is waiting. But if there is 
no waiting thread, the spin-wait loop continues to execute.  
On a multiprocessor system, the spin-wait loop consumes execution resources but 
does not affect the application performance. On a system with Hyper-Threading 
Technology enabled, the consumption of execution resources without contribution to 
any useful work can negatively impact the overall application performance. 
Therefore, the preferred solution for avoiding application specific spin-wait loops is to 
replace the loop with an operating system thread-blocking API, such as the Microsoft 
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Windows* threading API WaitForMultipleObjects. This call causes the 
operating system to block the waiting thread from consuming processor resources.  

Write-Combining Store Buffers 
Data is read from the first-level cache, that is, the fastest cache, if possible. If the data 
is not in that level, the processor attempts to read it from the next level out, and so on. 
When data is written, it is written to the first-level cache only if that cache already 
contains the specific cache line being written, and "writes-through" to the second-level 
cache in either case. If the data cache line is not in the second level cache, it must be 
fetched from further out in the memory hierarchy before the write can complete. 
Data store operations place data into "store buffers", which stay allocated until the 
store completes. There are also a number of "write-combining"(WC) store buffers, 
each holding a 64-byte cache line. If a store is to an address within one of the cache 
lines of a store buffer, the data can often be quickly transferred to and combined with 
the data in the WC store buffer, essentially completing the store operation much faster 
than writing to the second-level cache. This leaves the store buffer free to be re-used 
sooner, minimizing the likelihood of entering a state where all the store buffers are full 
forcing the processor to stop processing and wait for a store buffer to become 
available. 
The Intel NetBurst architecture, as implemented in the Intel Pentium 4 and Intel Xeon 
processors, has six WC store buffers. If an application is writing to more than four 
cache lines at about the same time, the WC store buffers begin to be flushed to the 
second-level cache. This is done to help insure that a WC store buffer is ready to 
combine data for writes to a new cache line. For best performance, the Intel® 
Pentium® 4 Processor and Intel Xeon™ Processor Optimization guide recommends 
writing to no more than four distinct addresses or arrays in an inner loop, so that you 
do not use more than four cache lines at a time.  
With Hyper-Threading Technology enabled processors, the WC store buffers are 
shared between two logical processors on a single physical processor. Therefore, the 
total number of simultaneous writes by both threads running on the two logical 
processors must be counted in deciding whether the WC store buffers can handle all 
the writes. In order to be reasonably certain of getting the best performance by taking 
fullest advantage of the WC store buffers, it is best to split inner loop code into 
multiple inner loops, each of which writes to no more than two regions of memory.  
Generally you should look for data being written to arrays with an incrementing index, 
or stores via pointers that move sequentially through memory. Writes to elements of a 
modest-sized structure or several sequential data locations can usually be counted as a 
single write, since they often fall into the same cache line and can be write combined 
on a single WC store buffer.  

64K Alias Conflicts 
The Intel Xeon processor with Hyper-Threading Technology shares the first-level data 
cache among logical processors. If two data virtual addresses reside on cache lines that 
are modulo 64 KB apart, they cause a conflict for the same cache line in the first-level 
data cache. This alias conflict can affect both the first-level data cache performance as 
well as impact the branch prediction unit. It is particularly troublesome for 
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applications that create multiple threads to perform the same operation but on different 
data.  
Subdividing work into smaller tasks performing the identical operation is often 
referred to as data domain decomposition. On Microsoft Windows* operating 
systems, threads are created on megabyte boundaries.  
Threads that perform similar tasks and access local variables on their respective stacks 
encounter an alias conflict condition, resulting in significant overall application 
performance degradation. To avoid this performance degradation, use the 
__alloca() function to adjust an individual thread’s starting stack address by a 
variable amount. Using the __alloca() function improves overall application 
performance on Intel Xeon processors with Hyper-Threading Technology.  

Effective Cache Locality 
Effective use of data cache locality is one of the many factors that impact cache 
performance. A well-known data cache blocking technique can take advantage of data 
cache locality. To use this technique, restructure loops with frequent iterations over 
large data arrays by sub-dividing the large array into smaller blocks, or tiles, such that 
the block of data fits within the data cache. Each data element in the array is reused 
within the data block before operating on the next block or tile. 
Depending on the application, a cache data blocking technique can be very effective. 
It is widely used in numerical linear algebra and is a common transformation applied 
by compilers and application programmers.  
Since the second-level unified cache contains instructions as well as data, compilers 
often try to take advantage of instruction locality by grouping related blocks of 
instructions close together as well. Typical applications benefiting from cache data 
blocking include image or video applications where the image can be processed on 
smaller portions of the total image or video frame. However, the effectiveness of the 
technique is highly dependent on the data block size, the processor cache size and the 
number of times the data is reused.  
With Hyper-Threading Technology, the cache is shared between logical processors so 
the relationship between block size and cache size also holds. Cache blocking 
algorithms need to take this into account. If a physical package has two logical 
processors, then while cache blocking, you must assume that only half of the cache is 
available to teach logical processor for use.  
You should detect the data cache size using Intel’s CPUID instruction and then 
dynamically adjust cache blocking tile sizes to maximize performance across 
processor implementations. Be aware that a minimum block size should be established 
such that the overhead of threading and synchronization does not exceed the benefit 
from threading. As a general rule, cache block sizes should target approximately one-
half to three-quarters the size of the physical cache for processors without Hyper-
Threading technology and one-quarter to one-half the physical cache size for a Hyper-
Threading Technology enabled processor supporting two logical processors. However, 
you should tune your block size based on your applications performance. 
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8. Using the VTune Performance Analyzer 
to detect Hyper-Threading Technology 
Issues 

You can use the Intel Tuning Assistant of the VTune Analyzer to detect many 
processor-specific issues that can affect performance. This section discusses how to 
use the Tuning Assistant to identify various performance issues relating to Hyper-
Threading Technology.  
To create a new project, an Activity, and to configure the sampling data collector to 
collect processor event data, follow the instructions in the “Configuring 
for EBS Data Collection” topic in the VTune Analyzer help. Focus on 
events that are particularly important for Hyper-Threading Technology 
performance issues. 
After you run your Activity using event-based sampling, the Tuning Assistant 
examines the collected event data and provides insights and hints about performance 
tuning opportunities and other events to collect. An example insight is shown in 
Figure 34. 
The Tuning Assistant takes the guesswork out of the determining which counters may 
or may not be indicating a performance issue. Use this information as a starting point 
to get an idea as to what optimizations and source code changes will make the biggest 
difference. 

 

Figure 34: Sample screenshot showing suggestions given by the Intel Tuning 
Assistant. 

 


